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1 Introduction

Despite impressive recent progress in structural macro modeling, policy makers often resort

to heuristics to decide on policy; combining insights from different models and relying heavily

on judgment calls and instincts.1 This practical approach has benefits in terms of robustness

to model mis-specification, but a major downside is that it can be difficult to identify the most

appropriate course of policy. Without a specific economic model, how can a policy maker

be confident that a policy decision is appropriate? For instance, how to determine that the

magnitude and timing of a fiscal package is well calibrated, or that the monetary stance is

appropriate, e.g., in a “Goldilocks zone” that best balances inflation and unemployment.

In this paper, we show that it is not necessary to know the full structure of the economy

to evaluate or even decide on macroeconomic policy. We consider a policy maker facing a

time t decision problem —how to set the policy path today given the state of the economy—,

and we show that two statistics are sufficient to detect and correct non-optimal decisions,

i.e., policies that do not minimize the loss function.

Our approach is based on the gradient of the loss function with respect to policy shocks.

Although little studied in the literature, this gradient has two key attractive properties: (i)

it is informative about the optimality of a policy decision, and (ii) it is relatively easy to

compute, depending only on two well-known statistics.

First, for a large class of models the gradient with respect to policy shocks must be

zero under an optimal policy. From this necessary condition it follows that this gradient is

sufficient to evaluate a policy decision, i.e., to detect a non-optimal policy. Moreover, for a

broad class of linear dynamic models setting the gradient to zero is necessary and sufficient

to characterize the optimal allocation. In other words, for that class of models, the gradient

is also sufficient to compute the optimal policy.

Second, for a large class of loss functions the gradient with respect to policy shocks

is given by the (weighted) product of two simple statistics (i) the forecasts for the policy

objectives conditional on the policy choice, and (ii) the effects of policy shocks on the policy

objectives. These two statistics are already central and well understood concepts for policy

makers (e.g., Orphanides, 2019). Our contribution is to show that these two statistics alone

can be used to rigorously evaluate and even set policy.

Intuitively, the first sufficient statistic —the forecasts for the objectives— serves to cap-

ture the state of the economy at time t —the characteristics of the time t decision problem—

and to define a scenario under a baseline policy rule. The second sufficient statistic —the

impulse responses to policy shocks— serves to explore whether deviating from that rule can

produce a lower loss. At an optimal policy, the gradient —a weighted product of the two

1See e.g., Svensson (2003), Mishkin (2010) and Blinder (2020).
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statistics— should be zero, and forecasts and impulse responses should be orthogonal: it

should not be possible to use the impulse responses to adjust the forecasts and lower the loss

function. This orthogonality condition forms the basis of our sufficient statistics approach

to policy evaluation.

Importantly, the two sufficient statistics can be estimated using reduced form econometric

models. To construct the forecast —the first sufficient statistic—, one only needs to compute

the best linear prediction for the policy objectives under the baseline rule, and for that

purpose we can draw on a variety of methods developed by the forecasting literature (e.g.,

Elliot and Timmermann, 2016). Similarly, the impulse responses to policy shocks —the

second sufficient statistic— can be estimated from reduced form models in combination

with identification restrictions or instrumental variables (e.g., Ramey, 2016). Naturally, the

estimation of these sufficient statistics does require some assumptions: it requires correctly

specifying a reduced form econometric model, the validity of identifying restrictions and

satisfying regularity conditions required for inference.

To formally implement our sufficient statistics approach, we do not work with the gradient

but instead with its rescaled version: the Optimal Policy Perturbation (OPP). Like the

gradient, the OPP is entirely determined by the two sufficient statistics, but it also has a

direct economic interpretation. The OPP is the adjustment to the baseline policy scenario

that exactly corrects an optimization failure when the loss function is quadratic and the

(unspecified) underlying model is linear. In other words, for linear models the OPP allows

to compute the optimal policy from sufficient statistics alone.

We then generalize the OPP statistic to take into account a number of considerations

that are of importance for the actual implementation of the sufficient statistics approach.

First, in a dynamic setting, the policy stance depends not only on the current level of the

policy instrument but also on its entire expected path. As a result, computing the optimal

policy path from the OPP requires the identification of policy news shocks —shocks to the

expected future level of the policy instrument— at all possible horizons. While this data

requirement is unlikely to be met in practice, we show how a subset OPP statistic, which

only uses a subset of all possible policy shocks, can be used to evaluate and improve (though

not fully correct) non-optimal policy decisions. For instance, if only contemporaneous policy

shocks can be credibly identified, the corresponding subset OPP will only evaluate and

improve the short-end of the policy path.

Second, policy makers often face constraints on their policy choice, coming for instance

from physical constraints such as the zero-lower bound, or from prior commitments. We

thus generalize the OPP statistic to incorporate constraints on the policy maker’s problem.

Intuitively, instead of working with the gradient of the loss function, the idea is to work with

the gradient of the Lagrangian that incorporates the constraints. The constrained OPP is
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then defined as the adjustment to the policy instruments, which sets the Lagrangian to zero

and makes the policy choice optimal given the constraints.

Third, policy decisions are often conducted sequentially, creating the possibility of dy-

namic inconsistency in policy decisions: a policy path that is optimal as of time t − 1 may

not be optimal when viewed as a decision problem at time t (e.g. Kydland and Prescott,

1977). We show that the OPP can be adjusted to suppress time inconsistent adjustments,

with no additional information requirement beyond the two sufficient statistics. Intuitively,

the key is to constrain the time t OPP such that the policy maker continues to satisfy the

optimality conditions of the time t− 1 problem.

In the main text, we derive all the properties of the OPP under the class of linear

models. In the web-appendix, we show how the OPP statistic (and its variants) can be

used to evaluate policy decisions in non-linear models. Intuitively, the gradient captures a

necessary condition of optimality: at the optimum there should not exist any rule adjustment

(including the OPP) that can lower the loss, so that the OPP should always be zero at an

optimal policy. However, in non-linear models, an OPP adjustment may not always improve

policy, as the gradient need not be a sufficient condition of optimality. The key non-linearity

that breaks the OPP policy improvement property is when the coefficients of the policy

block affect the coefficients of the non-policy block. Intuitively, an OPP adjustment will

generally change a policy maker’s reaction to the state of the economy —it will change the

policy rule—. If the coefficients of the policy rule affect the economy above and beyond their

effects on the policy instrument, there is no longer any guarantee that an OPP adjustment

will improve policy, simply because the OPP does not take into account that nonlinear

feedback.

To illustrate our sufficient statistics approach to macro policy evaluation, we study

US monetary policy decisions over 1990-2022. We start from the Fed’s dual inflation–

unemployment mandate, and we estimate/recover the sufficient statistics underlying the

OPP. We estimate impulse responses using high-frequency monetary surprises as instrumen-

tal variables (e.g. Eberly, Stock and Wright, 2020), and we use as forecasts the FOMC Survey

of Economic Projections —the policy makers’ own forecasts—.

While the contemporaneous fed funds rate has not been set exactly at its optimal level

since 1990, the adjustments suggested by the OPP are (in absolute value) overall small,

averaging only 25 basis points over the full sample. There are however some noteworthy

instances of non-optimal policies. For instance, we find evidence that the Fed should have

lowered the fed funds rate faster in the early stage of the Great Recession (when the zero

lower bound was not yet binding). We can also reject the optimality of unconventional

monetary policy operations in the middle of the Great recession, with the OPP calling for a

more aggressive use of unconventional policy measures —LSAP or QE— to lower the slope
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of the yield curve, a conclusion echoing that of Eberly, Stock and Wright (2020).

In our final exercise, we provide a real time analysis of monetary policy over 2019-

2022, paying particular attention to fed funds rate policy in the early stage of the COVID

recovery. We find that monetary policy was appropriate in the first half of 2021 despite

surging inflation, once we take into account the Sept. 2020 FOMC commitment to delay

liftoff until the labor market recovery was complete. However, we do find that the Fed should

have raised the fed funds rate at its 11/01/2021 meeting, almost 5 months earlier than the

actual lift-off date.

The remainder of this paper is organized as follows. We continue the introduction by

relating our sufficient statistics OPP approach to existing approaches in the literature. In the

next section we provide a simple example that informally explains how we can evaluate and

improve macro policy using sufficient statistics. Section 3 formally introduces the general

environment and Section 4 presents the OPP statistic and its extensions. Section 5 discusses

the implementation of our approach, notably the estimation of the two sufficient statistics.

In Section 6 we apply our methodology to empirically study monetary policy decisions in

the US. Section 7 concludes and provides potential avenues for further research.

Relation to literature

In the wake of the Lucas (1976) critique, the macroeconomic literature has built elabo-

rate micro-founded models in order to study optimal policy problems.2 In this paper, we

show how an optimal policy problem —how to set the policy path today given the state of

the economy?— can be recast as an econometric problem, in fact as two separate econo-

metric tasks —forecasting and impulse response estimation—. Thus, our paper uncovers

an important but so far overlooked link between the forecasting literature (e.g., Elliot and

Timmermann, 2016), the structural impulse response literature (e.g. Ramey, 2016) and the

optimal policy literature.

Related to our paper but with a different focus, McKay and Wolf (2022) considerably

expand the scope of impulse responses for counter-factual policy rule analysis. They show

that in a general family of linearized structural macroeconomic models the impulse responses

to policy news shocks are sufficient to construct policy rule counter-factuals that are robust

to the Lucas critique. Our finding that the gradient of the loss function with respect to policy

shocks is sufficient to characterize the optimal policy relies on the same insight, though the

OPP requires an additional statistic beyond impulse responses —the forecast— to capture

the nature of the time t decision problem.

Our sufficient statistics approach to macro policy evaluation naturally shares impor-

tant similarities with the sufficient statistic approach that originated in public finance (e.g.

2See e.g., Chari, Christiano and Kehoe (1994); Woodford (2010); Michaillat and Saez (2019).
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Chetty, 2009). Both methods exploit the fact that the welfare consequences of a policy can

be derived from high-level elasticities, allowing for policy evaluation without making para-

metric assumptions or estimating the structural primitives of fully specified models. One

feature specific to our macro focus is that we postulate a loss function at the macro level,

consistent with the fact that the loss function is often determined by political factors or

by statutory requirement. For instance, it is the US Congress that mandates the Federal

Reserve to seek stable inflation and full employment. That said, our approach can equally

be applied to problems with micro-founded loss functions.

Finally, our sufficient statistics approach can be seen as a key input in the context of

forecast-targeting rules (e.g., Svensson and Woodford, 2005; Woodford, 2013). Different

from a Taylor (1993)-type instrument rule, a forecast targeting rule specifies that the policy

path must be adjusted such that the forecasts for the policy objectives satisfy the first-order

conditions of optimality, as implied by a specific structural model. Outside of a specific

structural model however these first-order conditions were typically unknown, leaving policy

makers with imprecise forecast targeting criteria (e.g., Svensson, 1999). The sufficient statis-

tics approach fills this gap, because the OPP captures precisely the first-order conditions of

optimality, without being tied to any particular structural model.

2 A simple example

Before formally describing our general framework, we first present a simple example to

illustrate how two key statistics are sufficient to evaluate and improve macro policies. The

example is based on Gaĺı (2015, Section 5.1.1), which discusses the optimal policy problem

under discretion in the baseline New Keynesian model.

Consider a central bank with loss function

Lt =
1

2
(π2

t + x2t ) , (1)

with πt the inflation gap and xt the output gap. The central bank has only one instrument:

the nominal interest rate it.

The log-linearized baseline New-Keynesian model is defined by a Phillips curve and an

intertemporal (IS) curve given by

πt = Etπt+1 + κxt + ξt , (2)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (3)

with ξt an iid cost-push shock. We posit κσ > 1.
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In this paper, we are interested in evaluating policy decisions. To that effect, consider a

policy decision that is determined by a policy rule of the form

it = φπt + εt , (4)

with φ > 1 to guarantee a unique equilibrium and εt a policy shock. Given rule (4), a policy

choice is then a pair (φ, εt).

Solving the model and expressing the endogenous variables Yt = (πt, xt)
′ and it as func-

tions of the exogenous shocks, we get

Yt = Γyξt +Ryεt and it = Γiξt +Riεt , (5)

with

Ry =

[
−κ/σ

1+κφ/σ
−1/σ

1+κφ/σ

]
, Γy =

[
1

1+κφ/σ
−φ/σ

1+κφ/σ

]
, Ri =

1

1 + κφ/σ
and Γi =

φ

1 + κφ/σ
,

where Ry captures the impulse responses of the policy objectives Yt to the policy shocks εt,

while Γy captures the impulse response to a ξt shock. Similarly, Γi and Ri capture the effect

of these shocks on the policy rate.

The planner’s problem

The optimal allocation can be characterized by minimizing the loss function with respect

to πt, xt and it subject to the Phillips curve and (IS) curve constraints. This gives the

well-known optimal targeting rule

xt = −κπt , (6)

which can can be implemented by an instrument rule of the form (4) with φopt = κσ and

εt = 0 (e.g., Gaĺı, 2015). Combining (6) and (5), we can compute the optimal policy rate

from

ioptt = Γopt
i ξt , with Γopt

i =
κσ

1 + κ2
.

A limitation of this approach to characterize the optimal policy is that it requires the full

underlying model, that is the exact specification and coefficients of the Phillips and (IS)

curves. As we discussed in the introduction, this information requirement can be hard to

meet in practice.
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An alternative characterization of the optimal policy

We will now see that there is another way to characterize the optimal targeting rule and the

optimal policy; an approach that does not require knowing the details of the model, in this

case the Phillips curve or the (IS) curve.

The idea is to start from some initial policy rule and then study whether modifying that

rule can lower the loss function. Specifically, consider some baseline policy choice given

by the pair (φ0, ε0t ). This policy choices implies the allocation Y 0
t and i0t , and the impulse

responses under φ0 are denoted by with a 0 superscript, i.e., R0
y, R0

i , etc... The idea is then

to modify that baseline policy rule with some adjustment, or perturbation, δt, i.e.

it = φ0πt + ε0t + δt . (7)

Proceeding as with our derivation of (5), the model solution becomes

Yt = Γ0
yξt +R0

yεt︸ ︷︷ ︸
Y 0
t

+R0
yδt and it = Γ0

i ξt +Riε
0
t︸ ︷︷ ︸

i0t

+Riδt , (8)

These expressions, akin to laws of motion for Yt and it following a δt rule adjustment, show

that the effects of a change δt in the policy rule can be computed from Ry and Ri: the

impulse response to a policy shock.

We can now establish a key result: the optimal targeting rule can be derived by setting

the gradient of the loss function with respect to a perturbation δt to zero. Formally, we have

the equivalence

i0t = ioptt ⇐⇒ ∂Lt
∂δt

∣∣∣∣
δt=0

= R0′

y Y
0
t = 0 , (9)

where R0′
y Y

0
t = 0 is the optimal targeting rule.

To prove the result, use (8) to compute the gradient

∂Lt
∂δt

∣∣∣∣
δt=0

= R0′

y Y
0
t

=
1

σ + κφ0
(−κ,−1)

(
π0
t , x

0
t

)′
=

−1

σ + κφ0

(
κπ0

t + x0t
)
. (10)

The term in parenthesis is zero under the optimal targeting rule (6); x0t = −κπ0
t , which

establishes the equivalence.

Intuitively, under an optimal policy there should not exist any rule adjustment δt that

can lower the loss function. But since the effect of a rule adjustment δt is the same as the
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effect of a policy shock of the same size (equation (8)), this also means that it should not

be possible to use the impulse responses R0
y to better stabilize the forecasts Y 0

t : impulse

responses and forecasts should be orthogonal, i.e., R0′
y Y

0
t = 0.

It is also easy to see from (8) that the gradient with respect to a perturbation δt is the

same as the gradient with respect to a policy shock εt, and we can talk interchangeably of

the gradient with respect to a rule perturbation or to a policy shock. The reason is again

that the effect of an adjustment to the policy rule is the same as the effect of a policy shock

of the same size. However, εt and δt are different objects: εt is an exogenous variable (a

policy shock) while δt is a choice variable.

The equivalence (9) states that setting the gradient of the loss function with respect to

δt to zero is necessary and sufficient to characterize the optimal policy and optimal targeting

rule. We will now discuss two specific applications that exploit this equivalence: First, the

=⇒ relation implies that R0′
y Y

0
t = 0 forms a testable condition to evaluate whether a given

policy decision is optimal. Second, the⇐= relation can be exploited to compute the optimal

policy starting from any initial policy decision that implies a unique equilibrium.

Policy evaluation with sufficient statistics

We first illustrate how the two statistics R0
y and Y 0

t can be used to evaluate a policy decision.

Consider a policy maker following the rule (4) and proposing the policy i0t given by the

pair (φ0, ε0t ). The policy can be non-optimal for two reasons: φ0 6= φopt or ε0t 6= 0.

For i0t to be optimal, we just saw that the gradient of the loss function evaluated at i0t

must be zero, i.e., that

R0′

y Y
0
t = 0 , (11)

where R0
y is the effect of policy shocks under φ0 and Y 0

t is the allocation under i0t . Equation

(11) forms a testable condition to evaluate policy decisions: if R0′
y Y

0
t 6= 0, we can conclude

that i0t is not optimal.

Since the statistics R0
y and Y 0

t will typically need to be estimated, the gradient will

be computed with uncertainty, and our evaluation of the optimality of a policy choice will

resemble a hypothesis test: a statement that the policy is not optimal for some confidence

level.

Optimal policy with sufficient statistics

Second, the sufficient condition of optimality —the ⇐= relation in (9)— can be exploited

to compute the optimal policy ioptt using two statistics: (i) Y 0
t —the allocation under i0t—,

and (ii)
{
R0
y,R0

i

}
—the impulse responses to policy shocks—.
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The idea is to use the “law of motion” for Yt following a δt perturbation —Yt = Y 0
t +

R0
yδt— to find the adjustment that will best lower the loss function. Specifically, this consists

in finding a δ∗t that satisfies

δ∗t = argmin
δt

Lt s.t. Yt = Y 0
t +R0

yδt .

A closed-form solution for δ∗t is

δ∗t = −(R0′

y R0
y)
−1R0′

y Y
0
t . (12)

and we can compute ioptt from3

ioptt = i0t +R0
i δ
∗
t . (13)

The statistic δ∗t is what we call the Optimal Policy Perturbation (OPP). Clearly, the OPP

has the same property as the gradient — δ∗t 6= 0 implies i0t 6= ioptt —. Morover, the OPP δ∗t

allows to compute ioptt from some arbitrary initial policy choice i0t .

To understand how the OPP modifies i0t to get to the optimal policy, we can combine

(5) and (12) to decompose the OPP as the sum of two terms with

δ∗t =
1

R0
i

(Γopt
i − Γ0

i )︸ ︷︷ ︸
non-optimal rule

ξt − ε0t︸︷︷︸
exogeneous mistake

. (14)

The decomposition shows how the OPP corrects the two possibles sources of optimization

failure: (i) an exogenous policy mistake (ε0t 6= 0), or (ii) a non-optimal reaction to the cost-

push shock (Γ0
i 6= Γopt

i ). In other words, the OPP adjustment consists in (i) removing the

effect of the exogenous policy mistake ε0t , and (ii) changing the policy rule by having the

policy maker reacts optimally to the cost-push shock (changing from Γ0
i to Γopt

i ). Impor-

tantly, the decomposition also highlights that while the OPP can detect and fully correct a

non-optimal policy, it does not discriminate between the two sources of optimization failure,

and it is not informative about whether a non-optimal policy is due to a non-optimal re-

3We can verify that (13) indeed holds in this example and that i0t +Riδ
∗
t is the optimal policy:

i0t +R0
i δ
∗
t = R0

i ε
0
t + Γ0

i ξt −R0
i

(
R0′

y R0
y

)−1
R0′

y Y
0
t

= R0
i ε

0
t + Γ0

i ξt −R0
i

(
R0′

y R0
y

)−1
R0′

y (R0
yε

0
t + Γ0

yξt)

=

(
Γ0
i −R0

i

(
R0′

y R0
y

)−1
R0′

y Γ0
y

)
ξt

=
κσ

1 + κ2
ξt = Γopt

i ξt = ioptt .

where the last line uses the explicit expressions for the impulse responses from (5) to simplify the expression.
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action function or to an exogenous policy mistake. Doing so would require more structural

structural assumption, for instance specifying a policy rule.

3 General framework

We now generalize the OPP approach for a general dynamic macro environment that includes

a large class of macro models encountered in the literature but without committing to a

particular one. We first formalize the policy problem, the environment and our objectives.

The policy problem

Consider a policy maker at time t who aims to stabilize the expected path of the policy

objectives Yt = (y′t, y
′
t+1, . . .)

′, with yt = (y1,t, . . . , yMy ,t)
′ such that there are My objectives

for each horizon. The policy maker can form expectations about the future paths of Yt, based

on the time t information set Ft. We denote the expectation operator by Et(·) = E(·|Ft).
The objective of the policy maker is to minimize the expected loss function as of time t

Lt =
1

2
EtY′tWYt , (15)

where W = diag(β ⊗ λ) denotes a diagonal map of preferences with λ = (λ1, . . . , λMy)′

capturing the weights on the different variables and β = (β0, β1, . . .)
′ the discount factors for

the different horizons. While we consider a quadratic loss function in the baseline treatment,

the web-appendix extends our approach to arbitrary convex loss functions.

To minimize the loss function the policy maker can set Mp policy instruments at time

t, denoted by pt = (p1,t, . . . , pMp,t)
′. In addition, the policy maker can set the expected

policy path, that is the time-t expected values for pt+1, pt+2, . . . and so on. We denote by

EtPt = Et(p′t, p′t+1, . . .)
′ the corresponding expected future policy path as a function of the

time-t information set.

Environment

We consider a linear environment which can be justified for small fluctuations around a

steady-state.4 A generic model for the non-policy block of the economy at time t is given by{
AyyEtYt − AywEtWt −AypEtPt = ByxX−t + ByξΞt

AwwEtWt −AwyEtYt −AwpEtPt = BwxX−t + BwξΞt

, (16)

4The web-appendix discusses nonlinear extensions.
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where Wt = (w′t, w
′
t+1, . . .)

′ is a path for additional endogenous variables, the vector X−t =

(y′t−1, w
′
t−1, p

′
t−1, y

′
t−2, . . .)

′ captures the initial conditions as summarized by the history of

the variables yt, wt and pt, and Ξt = (ξ′t, ξ
′
t,t+1, ξ

′
t,t+2, . . .)

′ denotes the path of the structural

shocks to the economy. Specifically, ξt is the time t vector of structural (non-policy) shocks,

while the shocks ξt,t+h, for h = 1, 2, . . ., are news shocks: information revealed at time t

about shocks that realize at time t + h. The vector Ξt thus includes all shocks that are

released at time t. We normalize the news shocks to be mutually uncorrelated with mean

zero and unit variance. The linear maps A.. and B.. are conformable and we define the time

t information set in terms of the pre-determined inputs as Ft = {X−t,Ξt}.
This model is general and accommodates a large class models found in the literature,

not only standard New-Keynesian (NK) models (e.g., Smets and Wouters, 2007), but also

modern heterogeneous agents NK models (Auclert et al., 2021).

Optimal policy

The optimal policy can be characterized by considering a planner who chooses the paths

Yt,Wt and Pt in order to minimize the loss function, i.e.,

min
Yt,Wt,Pt

Lt s.t. (16) . (17)

Denote by EtPopt
t the corresponding optimal policy path. Note that the problem defines the

entire optimal policy path as a function of the information available at time t. For clarity

of exposition, we will make the following assumption.

Assumption 1. The optimal policy EtPopt
t is unique.

The assumption is not essential, and our results continue to hold when replacing EtPopt
t

with a set of optimal policies for which each element of the set solves (17).

Policy rule

We consider a generic model for the policy block with

AppEtPt −ApyEtYt −ApwEtWt = BpxX−t + BpξΞt + εt , (18)

where εt = (ε′t, ε
′
t,t+1, ε

′
t,t+2, . . .)

′ is the path of policy news shocks. Specifically, the vector εt =

(ε1,t, . . . , εMp,t)
′ includes the contemporaneous policy shocks to the Mp policy instruments

and εt,t+h are policy news shocks: information revealed at time t about policy shocks that

realize at time t + h. The policy news shocks εt are mean zero with unit variance and

uncorrelated with the initial conditions X−t and the other non-policy shocks Ξt.
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We collect all parameters of the policy rule (18) in φ = {App,Apy,Apw,Bpx,Bpξ}. A

policy choice is then defined by a pair (φ, εt) consisting of the rule parameters φ and the

policy news shocks εt.
5

Consider some baseline policy choice (φ0, ε0t ) and denote by EtP0
t and EtY0

t the associated

baseline paths for the policy instruments and policy objectives. For now, that baseline choice

is arbitrary except for the following assumption

Assumption 2. The rule φ0 underlying the baseline policy path EtP0
t leads to a unique and

determinate equilibrium.

This assumption is necessary for impulse responses and forecasts —our two sufficient

statistics— to be well defined. The following lemma formalizes this.

Lemma 1. Given the generic model (16) and the policy rule (18), under (φ0, ε0t ) with φ0

satisfying Assumption 2, we have

EtY0
t = Γ0

ySt +R0
yε

0
t

EtP0
t = Γ0

pSt +R0
pε

0
t

, (19)

with St = (X′−t,Ξ
′
t)
′ and E(ε0tS

′
t) = 0.

Lemma 1 characterizes the model solution, expressing the endogenous variables EtY0
t

and EtP0
t as functions of the state of the economy St = (X′−t,Ξ

′
t)
′, which captures initial

conditions X−t and the non-policy shocks Ξt, and the policy shocks ε0t . Note that EtY0
t and

EtP0
t are the oracle forecasts as of time t, that is the expectations for Yt and Pt conditional

on the information set Ft and the policy choices (φ0, ε0t ).

In addition, Lemma 1 defines the impulse responses of EtY0
t and EtP0

t to policy and

non-policy shocks. We have that R0
y captures the impulse responses of the objectives to

policy news shocks at different horizons —from horizon-0 (εt) to any horizon h > 0 (εt,t+h)—

under the rule φ0. Similarly, R0
p captures the effects of these shocks on the expected policy

path. The impulse responses to the state of the economy St are denoted by Γy and Γp, but

these statistics will not play an important role in our approach.

4 Optimal policy with sufficient statistics

In this section we show how, for the generic class of models captured by (16), we can use

sufficient statistics to characterize the optimal policy.

5While it may seem surprising to allow for non-zero policy shocks —why would anyone propose a policy
path involving (necessarily non-optimal) exogenous factors—, this is important in a policy evaluation context,
as we do not want to a priori rule out the possibility of exogeneous policy mistakes.
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As in the simple example of Section 2, our approach consists in starting form some

baseline policy choice (φ0, ε0t ) and modifying that baseline policy rule φ0 as follows

A0
ppEtPt −A0

pyEtYt −A0
pwEtWt = B0

pxX−t + B0
pξΞt + ε0t + δt, (20)

where δt = (δ′t,t, δ
′
t,t+1, . . .)

′ is a path of adjustments to the policy rule equations. To stress

that we view δt as a choice parameter we write EtPt(δt) and EtYt(δt) to denote the expected

policy path and expected allocation under the modified policy rule (20).

The following lemma establishes how δt affects the initial allocation, that is the equilib-

rium under the policy choice (φ0, ε0t ).

Lemma 2. Given the generic model (16) and the modified policy rule (20), under (φ0, ε0t )

with φ0 satisfying Assumption 2, we have

EtYt(δt) = EtY0
t +R0

yδt

EtPt(δt) = EtP0
t +R0

pδt
, (21)

where EtP0
t and EtY0

t are given in Lemma 1.

In other words, the adjustment δt has a linear effect on the baseline paths EtY0
t and

EtY0
t , and that effect is given by the impulse responses to policy news shocks. The lemma

effectively mimics equation (8) from the simple example. and it will allow us to study how

a rule perturbation δt modifies the baseline allocation. The important difference is that δt

adjusts the entire expected policy path as there is one component in δt for each horizon of

the policy path.

With Lemma 2, we can now characterize the optimal policy as defined in (17) using

sufficient statistics.

Proposition 1. Given the generic model (16) and the modified policy rule (20), under

(φ0, ε0t ) with φ0 satisfying Assumption 2, we have under Assumption 1 that

EtP0
t = EtPopt

t ⇐⇒ ∇δtLt(δt)|δt=0 = R0′

yWEtY0
t = 0 , (22)

where Lt(δt) = 1
2
EtYt(δt)

′WYt(δt).

The proposition characterizes the optimal policy in terms of the gradient of the loss

function with respect to δt. Intuitively, if EtP0
t = EtPopt

t there is no adjustment δt that

can lower the loss function and the gradient of the loss function evaluated at δt = 0 should

be equal to zero. As in the simple example (cf. equation (9)) the first order condition

R0′
yWEtY0

t = 0 is the optimal targeting rule, implying that the policy maker should choose

φ such that this condition holds. The benefit of the equivalence (22) is that it allows us to

14



characterize the optimal policy from only two statistics: the forecasts EtY0
t and the impulse

responses R0
y.

4.1 The OPP statistic

While the gradient fully characterizes the optimal policy, it will be useful to work with its

rescaled version: the Optimal Policy Perturbation (OPP). Specifically, the idea of the OPP

is to find the “best” adjustment δt to the baseline rule φ0, that is find the δt that solves the

problem

δ∗t = argmin
δt

Lt(δt) s.t. EtYt(δt) = EtY0
t +R0

yδt , (23)

where Lt(δt) is defined in Proposition 1. This perturbed policy problem has a closed form

solution given by

δ∗t = −(R0′

yWR0
y)
−1R0′

yWEtY0
t . (24)

The perturbation δ∗t is the Optimal Policy Perturbation (OPP), generalizing the version

introduced for the simple example, see equation (12). The only differences are the dimensions

and the weighting of the policy objectives.6

Note how the OPP formula looks like the formula of a weighted least squares regression.

In fact, the OPP uses R0
y —the impulse responses to policy news shocks— in order to best

stabilize the policy objectives, i.e., minimize the (weighted) sum-of-squares of EtYt(δt), the

expected paths for the policy objectives after the policy adjustment. This is nothing but a

regression of EtY0
t (the forecast before the adjustment) on −R0

y. The minus sign is present

because the goal is not to best fit EtY0
t , but instead to best “undo” movements in EtY0

t .

We can now state the two key properties of the OPP.

Proposition 2. Given the generic model (16) and the augmented policy rule (20), under

(φ0, ε0t ) with φ0 satisfying Assumption 2, we have under Assumption 1 that

1. EtP0
t = EtPopt

t ⇐⇒ δ∗t = 0

2. EtPopt
t = EtP0

t +R0
pδ
∗
t .

First, mimicking Proposition 1 we have that if and only if the OPP is zero the policy of

interest is equal to the optimal policy. From that property, we can evaluate policy decisions:

if the OPP is non-zero, we will conclude that the policy path EtP0
t is not optimal. Second, we

6Throughout we assume that the inverse (R0′

y WR0
y)−1 exists. If this is not the case this implies that

the effects of the policy instruments are linearly dependent and we can remove one of the instruments from
the analysis and simply proceed with the reduced set of instruments for which the invertibility requirement
holds.
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can use the OPP to construct the optimal policy path EtPopt
t from some arbitrary baseline

policy choice that implies a unique equilibrium.

To see how the OPP constructs the optimal policy by adjusting the baseline choice,

assume that there exists a rule that underlies EtPopt
t , say φopt, and that leads to a unique

equilibrium. Then, together with Assumption 2, we can write both policy paths EtP0
t and

EtPopt
t as functions of (i) the initial conditions and (ii) the current and expected future

shocks. Using Lemma 1, the two policy paths are given by

EtPopt
t = Γopt

p St and EtP0
t = Γ0

pSt +R0
pε

0
t , (25)

where the map Γopt
p captures the policy maker’s optimal response to the state of the economy

St = (X′−t,Ξ
′
t)
′.

Combining these expressions, we can decompose the OPP as

R0
pδ
∗
t =

(
Γopt
p − Γ0

p

)
St −R0

pε
0
t . (26)

Starting from a baseline choice (φ0, ε0t ), the OPP statistic corrects the two factors behind

a non-optimal policy: (i) it changes how the policy maker responds to the state of the

economy and makes the reaction function optimal (Γopt
p − Γ0

p), and (ii) it suppresses the

policy mistakes, i.e., non-zero exogenous policy shocks (−ε0t ).

Discussion

At this point, it is useful to intuitively discuss the properties of the OPP implied by Propo-

sition 2, and more generally the benefits as well as the limits of our sufficient statistics

approach to macro policy evaluation.

Econometric-based optimal policy Through the OPP, Proposition 2 states that two

statistics (EtY0
t and R0

y) are necessary and sufficient to fully characterize the optimal policy.

In fact, we can view the OPP as using the statistics EtY0
t and R0

y to characterize the optimal

policy in two stages: in a first stage, EtY0
t serves to capture the state of the economy at

time t —the characteristics of the time-t decision problem— and to define a baseline policy

scenario under the rule φ0. In a second stage the causal estimate R0
y is used to find the

deviation from that baseline scenario that produces the lowest loss.

In other words, the OPP can be seen as splitting the optimal policy problem into two

separate econometric tasks: (i) a forecasting task —approximating EtY0
t—, and (ii) a causal

inference task —estimating R0
y—.

This econometric interpretation helps understand two attractive properties of the suffi-
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cient statistics approach.

First, the sufficient statistics approach has a lower information requirement than a struc-

tural model based approach, because reduced form econometric models can be used to com-

pute forecasts and impulse responses. To construct a forecast for Y0
t , we only need a sample

period when the rule φ0 was in effect in order to be able to compute the best linear predic-

tion for Y0
t . This is a much lower information requirement than the traditional model based

approach, which requires specifying the entire model structure, i.e., the entire maps A,B
in (16). Similarly, the impulse responses to policy shocks can be estimated from a reduced

form model, e.g. a VAR or local projection, in combination with identification restrictions

or instrumental variables. We will discuss the estimation of the two sufficient statistics in

detail in section 5.

Second, the sufficient statistics approach offers a simple two-step algorithm to compute

the optimal policy path from reduced form models alone: In a first step, compute a set of

baseline forecasts EtP0
t and EtY0

t under some baseline rule φ0, and in a second step use the

impulse responses (under that same rule) to compute the OPP. The optimal policy path is

then given by EtPopt
t = EtP0

t + R0
pδ
∗
t . In this algorithm, the baseline policy choice is an

artifact used to capture the characteristics of the time-t problem —a tool to compute the

optimal policy—, and any baseline policy choice can do as long as Assumption 2 is verified.

Robustness to the Lucas critique It may seem surprising that a reduced form approach

is able to characterize the optimal policy, i.e., that our approach is robust to the Lucas

critique. Indeed, a worry could be that the OPP is based on impulse responses to policy

shocks —surprise deviations from a prevailing policy rule—, which need not be informative

about the effects of alternative policy rules. Lemma 2 shows that this worry is unfounded:

for linear models like (16) the effect of an adjustment δt to the policy rule can be computed

from the impulse responses to policy shocks alone (equation (21)). Intuitively, this property

stems from the independence of the policy block and the non-policy block: a policy choice

(φ0, ε0t ) affects the allocation only through its effects on the expected policy path. As a result,

the impulse responses to shocks to the expected policy path are sufficient, in combination

with EtP0
t , to construct the optimal policy path at time t. This property echoes the recent

findings of McKay and Wolf (2022) that in a large family of linearized structural macro

models the impulse responses to policy news shocks are sufficient to construct arbitrary

policy rule counter-factuals that are robust to the Lucas critique.

Limits of the sufficient statistics approach We note two limitations of the sufficient

statistics approach.

First, the lower information requirement of reduced form models is not without costs.
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Depending on the particular application, there may not exist enough empirical evidence to

estimate the impulse responses to all policy news shocks. In that case, the sufficient statistics

approach can be used to evaluate and improve a baseline policy choice, but it can no longer

be used to compute the optimal policy path. We will discuss this point in the next section.

Second, the environment in Section 3 is defined by a quadratic loss function (15) and a

dynamic linear model (16). Going beyond this set-up is possible and we briefly discuss it

here, leaving a general treatment for the Appendix.

Broadly speaking, the OPP statistic (and its variants) can still be used to evaluate

policy decisions in non-linear models with convex loss. Intuitively, the gradient continues to

capture a necessary condition of optimality: at the optimum there should not exist any rule

adjustment (including the OPP) the can lower the loss, so that the OPP should always be

zero at an optimal policy, and finding a non-zero OPP will indicate that the policy path is

non-optimal.

However, in non-linear models, it may not be possible to use the OPP (at least, in its

current form) to compute the optimal policy. The reason is that the gradient need not be

a sufficient condition of optimality. The key non-linearity that breaks the equivalence result

in Proposition 2 is when the coefficients φ of the policy rule affect the coefficients of the

non-policy block (A.. and B..). In that case, it is no longer true that a policy rule affects

the allocation only through the policy path, and the robustness to the Lucas critique (as

discussed above) breaks down: the effects of policy news shocks are no longer able to capture

the effects of changes in the policy rule φ.

4.2 Subset OPP

Computing the OPP requires the entire map R0
y of impulse responses to policy shocks. In

practice, computing all impulse responses can be infeasible as identifying shocks to every

element of the expected policy path can be hard. Moreover, the policy shocks that we do

identify in practice need not correspond to a single news shock, but could instead be a linear

combination of multiple policy news shocks.

However, we can still use a subset or linear combination of policy shocks to evaluate and

improve a baseline policy decision. Specifically, instead of computing the OPP adjustments

at all horizons of the policy path, we can compute only the policy rule adjustments for the

horizons (or linear combinations thereof) for which the effects can be identified.7

Let ε0a,t denote the subset or linear combination of policy shocks that can be identified.

7Again, the two step decomposition of the optimal policy problem —forecasting EtY
0
t and impulse re-

sponse estimationR0
y— is crucial for this result. To construct forecasts we only need the best linear prediction

for Y0
t and the causal map R0

y is not needed. Therefore, to evaluate a baseline policy choice we can use a
subset of the causal map R0

y to see if the baseline policy could be improved in the corresponding direction.
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The subset of the causal effects R0
y,a measures the effect of ε0a,t on the policy objectives.

Similarly ε0
a⊥,t and R0

y,a⊥ capture the shocks and the associated impulse responses of the

non-identifiable policy shocks.

Let δt = (δa,t, δa⊥,t) be the corresponding partitions of the policy perturbations. The

subset OPP is defined by

δ∗a,t = argmin
δa,t

Lt(δa,t,0) s.t. EtYt(δa,t,0) = EtY0
t +R0

y,aδa,t , (27)

which has the closed form solution

δ∗a,t = −(R0′

y,aWR0
y,a)
−1R0′

y,aWEtY0
t . (28)

The subset-OPP statistic has the following properties

Corollary 1. Given the generic model (16) and the augmented policy rule (20), under

(φ0, ε0t ) with φ0 satisfying Assumption 2, we have under Assumption 1 that

1. δ∗a,t 6= 0 =⇒ EtP0
t 6= EtPopt

t

2. Lt(δ∗a,t,0) ≤ Lt(0,0), i.e. the adjusted path EtP0
t +R0

a,pδ
∗
a,t implies a lower loss

than the initial path EtP0
t .

Similar as in Proposition 2, if the subset OPP statistic is non-zero the policy EtP0
t is

non-optimal. Moreover, adjusting the baseline policy with the subset OPP will improve the

baseline policy path, though it will generally not give the optimal path EtPopt
t . In other

words, the subset OPP allows to compute the best policy path given the sufficient statistics

available.

To help understand the intuition behind Corollary 1, it is helpful to restate it in words.

Imagine that the empirical literature has only identified some combination of policy news

shocks, that is some policy experiments for which we know the effects on both the expected

policy path and the expected policy objectives. The subset OPP then consists in using

these policy experiment to perturbate the baseline policy path EtP0
t and search for a more

optimal one within the restricted space spanned by these policy experiments. This approach

will improve a baseline policy choice, but it need not find the optimal policy

4.3 Constrained OPP

The policy problem that we considered so far —problem (17)— is an unconstrained opti-

mization problem: there are no restrictions on the policy path. In practice however, policy

makers may face additional constraints, coming either from physical constraints (e.g., the
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lower-bound on the policy rate in the context of monetary policy) or from pre-commitments

(e.g., a promise to keep the policy rate at zero for some time).

The sufficient statistics approach can easily be extended to incorporate such constraints.

In a nutshell, the approach consists in replacing the loss function Lt with the Lagrangian

that incorporates the constraints. The optimal allocation can then be fully characterized

using the gradient of the Lagrangian (instead of the gradient of the loss function).

We allow the constraints to be general nonlinear functions of EtYt and EtPt that can be

written as8

C(EtYt,EtPt) ≥ c , (29)

where C(·, ·) : R∞×R∞ → Rdc is the known constraint function and c a vector of constants

of length dc (possibly infinite). As an example, suppose that EtPt = Et(it, it+1, . . .) is the

expected interest rate path of a central bank. We can impose the zero lower bound by setting

C(EtYt,EtPt) = EtPt and c = 0.

To incorporate the constraints into the policy problem we modify the original policy

problem (17) to become

min
Yt,Wt,Pt

Lt s.t. (16) and C( EtYt,EtPt) ≥ c . (30)

The optimal solution for EtPt is denoted by EtPopt,c
t , and for simplicity we assume that it

is unique (as in Assumption 1).

The question that we study is then whether a baseline policy path EtP0
t implied by a

choice (φ0, ε0t ) is equal to the constrained optimal path and — if not — how it should be

adjusted.

Following the same steps as with the unconstrained OPP, we can construct a constrained

OPP statistic given by

δc∗t = argmin
δt

Lt(δt) s.t. EtYt(δt) = EtY0
t +R0

yδt ,

and C(Et Y0
t +R0

yδt,EtP0
t +R0

pδt) ≥ c . (31)

In contrast to the baseline OPP statistic that was obtained by solving (23), there exists no

closed form solution for δc∗t . Nevertheless, we can easily solve this problem numerically as

all inputs are the same as above. A subset constrained OPP can be formulated similarly by

minimizing only with respect to δa,t.

The constrained OPP statistic has the same properties as the OPP, but now with respect

to the optimal constrained policy choice defined in (30). Specifically, if and only if δc∗t = 0

8The web-appendix discusses a slightly more general treatment which also allows for constraints on the
other endogenous variables EtWt.
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we have that EtP0
t = EtPopt,c

t . Moreover, we have that EtPopt,c
t = EtP0

t +R0
yδ

c∗
t , we can use

the constrained OPP to compute the optimal constrained policy path from some arbitrary

baseline policy choice that implies a unique equilibrium. The web-appendix provides the

formal statement and explicit examples.

4.4 Time consistent OPP

So far we have considered the problem of a policy maker making a one time decision about

the policy path given the time-t information set.

Here we go one step further and study the sequential nature of policy making that is

often encountered in practice: at different time intervals, policy makers convene to decide on

their desired policy path.9 As is well known, such sequential decision making process creates

the possibility of dynamic inconsistency: a policy path that is optimal as of time t− 1 may

not be optimal viewed from a time decision problem as of time t (Kydland and Prescott,

1977). In this paper we do not take a stand on which policy problem the policy maker should

consider —time-consistent or not— when making sequential decisions, but we provide the

tools to evaluate and optimize policy decisions for any of the given problems. With that

mind, this section develops a time consistent OPP that eliminates dynamic inconsistency.

As preliminary step, we first make dynamic inconsistency more explicit. Using the fact

that the OPP fully characterizes the optimal policy (Proposition 1, part 1), we can contrast

the time t − 1 and the time t problems by comparing the OPPs for the time t − 1 and the

time t problems. We have

δ∗t−1 = D0Et−1Y0
t−1 vs δ∗t = D0EtY0

t ,

where D0 = −(R0′
yWR0

y)
−1R0′

yW can be seen as a weighting map capturing how the policy

objectives yt−1, yt, yt+1, . . . are weighted in the first order conditions for optimality.

Some simple manipulations give the decomposition

δ∗t = δ∗t−1 + D0∆EtY0
t︸ ︷︷ ︸

Information update

+ ∆D0Et−1Y0
t−1︸ ︷︷ ︸

Preference shift

, (32)

where ∆Et (·) = Et (·) − Et−1 (·) is the information update operator and the map ∆D0 =

[D0
1 − 0,D0

2 −D0
1, ...] is a “pseudo-difference” map with D0

i the ith ∞ × My block of D0,

i.e. D0 = [D0
1,D0

2, . . .]. There are two differences between the time t and t− 1 optimization

problems: (i) a different information set and (ii) a different objective function and set of

instruments.

9For instance, the FOMC meets eight times a year to decide on its expected policy path and has some
discretion to deviate from earlier announcements.
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Consider a policy maker making an optimal decision from the time t−1 perspective (such

that δ∗t−1 = 0). There are two forces that can lead that policy maker to adjust her policy

path at time t relative to her initial choice at time t − 1: (i) new information revealed at

time t —the information update ∆Et —, and (ii) a change in the objectives of the policy

maker —the preference shift ∆D0—. Dynamic inconsistency comes from the preference shift

term: even if no new information is revealed between t−1 and t, an optimizing policy maker

will re-adjust her policy decision, because the time t problem puts different weights on the

path yt−1, yt, yt+1, . . .. This change in weights is captured by ∆D0 with two specific changes.

First, the time t problem ignores yt−1. Second, the time t problem weighs all the policy

objectives as if the problem was started over from time t and lets “bygones be bygones”.

Using (32), we can then construct a time consistent OPP that eliminates dynamic in-

consistency, which we define as

δτ∗t = δ∗t −∆D0Et−1Y0
t−1 , (33)

where the original OPP is adjusted with a “time inconsistency correction factor” given by

∆D0Et−1Y0
t−1. Intuitively, under a time consistent OPP, an optimizing policy maker will

update its policy path between t− 1 and t only if new information is revealed.

Importantly, this correction factor is again entirely determined by our two sufficient

statistics, so that no extra information is necessary to implement a time-consistent OPP.10

Equivalently, we can view this OPP as a special case of the constrained OPP where the

constraint ensures that, in the absence of new information, the first order condition of the

time t problem is equal to the first order condition of the time t− 1 problem.11

5 Implementation of the OPP

In this section we show how to use our sufficient statistics approach to (i) evaluate policy

decisions, and (ii) improve policy. First, we discuss how to estimate the two statistics EtY0
t

and R0
a using reduced form econometric methods, and we then discuss how to use these

estimates (along with their corresponding distribution) to evaluate and improve a baseline

policy path EtP0
t using the subset OPP statistic. The web-appendix provides a detailed

step-by-step implementation guide and examples.

10A subset version of the time consistent OPP can be easily constructed by replacing δ∗t by δ∗a,t — the
subset OPP — and R0

y by R0
y,a — the subset of estimable impulse responses —.

11Formally, the constraint is given by C(EtYt,EtPt) = R′WEt−1EtYt −R′WEt−1Y
0
t−1 = 0. As a result

the time consistent OPP inherits the properties of the constrained OPP (see the web-appendix section S4
for a formal statement).
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The baseline policy. So far, we have kept the baseline policy choice (φ0, ε0t ) unspec-

ified, and the OPP properties hold for any arbitrary initial choice (provided φ0 implies a

unique equilibrium; cf Assumption 2). To be able to estimate the sufficient statistics, we

will require that the baseline rule φ0 was implemented over some sampling period.12 Within

that restriction, different baseline policies are possible. In this section, we focus on policy

evaluation on behalf of the policy maker, or the policy maker’s staff, so that we treat the

policy path EtP0
t corresponding to (φ0, ε0t ) as chosen by the policy maker and thus known.

In the web appendix, we consider alternative baseline policies.

Forecasts. The first task is to construct an estimate Ŷ0
t for EtY0

t , that is the oracle

prediction for Y0
t conditional on the baseline policy choice (φ0, ε0t ) and the state St capturing

the initial conditions X−t and the macro shocks Ξt.

We denote by Zt a (possibly large) set of variables that can be used to approximate the

state St. Since we are only interested in prediction (and not in recovering causal effects), we

consider the reduced form model

Y0
t = B0

yzZt + B0
ypEtP0

t + Uy
t , (34)

where the maps B0
yz and B0

yp contain the best linear prediction coefficients under the rule

φ0.
13 Based on (34) we can estimate the best linear prediction coefficients B0

yz and B0
yp using

the data sample over which the policy rule φ0 was implemented, and we can then construct

the forecast Ŷ0
t = B̂0

yzZt + B̂0
ypEtP0

t using these estimated coefficients, the path EtP0
t , and

the observable predictors Zt.

Within this general scheme different specific approaches are possible, and we can use

methods from the forecasting literature (e.g. Elliot and Timmermann, 2016). For instance,

we can impose restrictions on the model coefficients in order to improve forecasting perfor-

mance, e.g. we can impose a VAR structure (e.g. Banbura, Giannone and Reichlin, 2010),

a DSGE structure (e.g. Negro and Schorfheide, 2013), or a dynamic factor model structure

(e.g., Stock and Watson, 2002). In addition, we can use shrinkage methods for the estimation

of the coefficients (e.g., Stock and Watson, 2012) and we can incorporate judgment (e.g.,

Lawrence et al., 2006; Manganelli, 2009). More generally, we can combine different models

using averaging methods (e.g. Cheng and Hansen, 2015). We provide specific examples in

the web-appendix.

12For an ex-post policy evaluation, the sample could run throughout the evaluation period. For real time
policy improvement, the sample would have to be an in-sample period (before time t) over which the policy
rule φ0 was implemented.

13These coefficients do not have a causal interpretation, and model (34) cannot be used directly for policy
prescriptions as the maps B0

yz and B0
yp are only valid for policies under the baseline rule φ0. This is the

reason we need a second sufficient statistics; the causal effects of policy shocks.
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As a practical matter, policy makers often make their forecasts for Y0
t publicly available,

and these can then be directly used to compute the OPP and evaluate the expected policy

path EtP0
t . For instance, in our empirical work below we will use the FOMC forecasts for

inflation and unemployment in order to evaluate monetary policy decisions.

Impulse responses. To estimate impulse responses we can rely on a large macro-

econometric literature that estimates impulse responses to policy shocks. The review of

Ramey (2016) provides a wealth of identification approaches for recovering the impulse re-

sponses and all such methods can be adopted in our setting using either local projections or

structural VARs. To give a few examples, one can use zero-, long-run, or inequality restric-

tions (e.g. Sims, 1980; Blanchard and Quah, 1989; Faust, 1998; Uhlig, 2005), or instrumental

variables (e.g. Mertens and Ravn, 2013; Stock and Watson, 2018). A key requirement is that

the sample of observations used needs to pertain to the policy regime φ0. We denote the

estimated subset of impulse responses, corresponding to R0
a = (R0

y,a,R0
p,a), by R̂0

a.

Uncertainty assessment. To approximate the distribution of the OPP statistic we

need to approximate the distribution of the impulse response estimates URa
t = R0

a−R̂0
a and

the distribution of model uncertainty Uyt = EtY0
t − Ŷ0

t . Note that model uncertainty arises

from not being able to perfectly approximate the state of the economy and from parameter

estimation uncertainty. In general we denote the approximated distribution by F̂ and we

can distinguish between two scenarios for computing F̂ .

If a single reduced form model is used to construct both the impulse responses and

the forecasts, conventional asymptotic theory or Bayesian methods can be used to obtain

an estimate of the joint distribution of (URa
t ,Uyt ). If model mis-specification is a concern,

historical forecast errors can be used to approximate the distribution of Uyt , see Stock and

Watson (2019, Section 15.5).

If forecasts and impulse responses are instead obtained from different models or sources

(for instance, if the forecast is the policy maker’s published forecast), we will typically have

to make the additional assumption that URa
t is independent of Uyt .

Subset OPP. After obtaining the approximating distribution F̂ , we can compute the

distribution of the subset OPP using simulation methods for a given preference map W .

A first application of the subset OPP is for historical policy evaluation: identifying

instances when the policy decision deviated from the optimal decision, and if so by how

much. Using Corollary 1, we will conclude that a policy EtP0
t is not optimal whenever the

confidence bands of δ∗a,t exclude zero at any desired level of confidence. The magnitude of

the deviation of optimality is given by δ∗a,t.

Another application of the subset OPP is to compute a best policy given the sufficient
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statistics available, that is to compute the best improvement over the baseline policy. With

the distribution of the subset OPP in hand, we can use simulation to compute the distribu-

tions of the best policy path (EtP0
t +R0

a,pδa,t) and the associated paths of policy objectives

(EtY0
t +R0

a,yδa,t).

6 Illustration: US monetary policy

In this section we illustrate how the OPP statistic can be used in practice to evaluate

and improve monetary policy decisions. As a loss function we posit the dual inflation-full

employment mandate imposed by the US Congress on the Fed, so that we take as policy

objectives

yt = (πt − π∗t , ut − u∗t )′

with π∗t and u∗t the long-run values for inflation and unemployment. The path of objectives

is thus Yt = (y′t, y
′
t+1, . . . , y

′
t+H)′, where we truncate the paths at a horizon of H = 5 years.

For the weighting matrix W , we set the discount rate βh = 1 for all h and set the preference

parameter λ = 1, consistent with the Fed’s balanced approach to its dual mandate (Bernanke,

2015).14

Our evaluation period is from 1990 until 2022, and we assume that the Fed’s reaction

function was stable over this sampling period.

6.1 Recovering the sufficient statistics

Evaluating policy decisions made over 1990-2022 requires (i) conditional forecasts at each

decision point over that period (EtY0
t and EtP0

t ), and (ii) estimates for the impulse responses

to monetary shocks over that period (R0
y and R0

p).

Conditional forecasts

As primary source, we exploit the Survey of Economic Projections (SEP), which allows us

to get estimates for EtY0
t and EtP0

t over 2007-2022. The SEP is being conducted four times

a year (ahead of an FOMC meeting) since October 2007, and it asks FOMC members to

report their forecasts for unemployment, inflation (headline and core) and real GDP growth

14In the web-appendix, we show results for a range of λ over [0.2, 2]. If the user of the sufficient statistic
approach is the policy maker (or her staff), we can treat λ (or β) as a preference parameter, i.e., a choice
for the policy maker. For a retrospective or external analysis of policy decisions, presenting results for a
range of values for λ is useful to understand which alternative values for λ could explain some decisions.
In the web-appendix, we also propose a conservative (i.e., robust) approach to elicit λ. Specifically, the
procedure consists in picking the λ that is least favorable to rejecting that a policy was optimal. In addition,
we note that more elaborate loss functions, for instance including a financial stability objective or a motive
for smooth policy changes (e.g., Rudebusch, 2001), could be interesting to explore.
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over the next 3 or 4 years, depending on the survey date. While the Fed only releases FOMC

members’ individual forecasts with a five year delay, the median, “central tendency”,15 and

the range for members’ forecasts are reported after each SEP round. Since April 2009, the

SEP also asks for estimates for the long-run values of these variables, and since September

2015 the SEP also asks for FOMC members’ forecast for the fed funds rate.

We take the median FOMC forecasts as our estimates Ŷ0
t for E0

tYt. We posit that model

uncertainty —the distribution of Uyt = EtY0
t − Ŷ0

t— is normally distributed, and we find

for each SEP round the normal distribution that best fit the reported central tendency and

range for the SEP forecasts. We take the median FOMC forecast as our estimate for EtP0
t .

Since SEP forecasts only go four years out at most, we complement them with estimates

for long-run inflation and unemployment, where we posit that these long-run values are

reached linearly after 5 years. We use the SEP estimates after 2009, and the Greenbook

estimates before 2009. The inflation and unemployment gaps are then defined as deviations

of inflation and unemployment from these long run estimates. Finally, since SEP projections

are annual, we linearly interpolate them to quarterly frequency in order to combine them

with the estimated impulse responses that we detail in the next section.

To obtain forecasts before 2007, we exploit the Monetary Policy Report (MPR) —the

predecessor of the SEP—, which is submitted semi-annually to US Congress and includes

median, central tendency and range of FOMC members’ forecasts. The MPR is more lim-

ited in scope than the SEP however, as the forecasts for inflation and unemployment only

extend two years out. To complement this information, we use the Fed real time Greenbook

estimates for long-run inflation and unemployment, and we posit that these long-run values

are reached at a linear convergence rate after 5 years. Clearly, the assumptions needed to

evaluate pre-2007 decisions from FOMC forecasts are stronger.

Impulse responses to policy shocks

As monetary shocks, we follow the recent literature (e.g. Eberly, Stock and Wright, 2020)

to identify two monetary shocks: (i) shocks to the contemporaneous fed funds rate and (ii)

shocks to the slope of the yield curve, which the Fed can affect through forward-guidance

or asset purchases (QE). These will allow us to compute a subset OPP vector based on two

sets of impulse responses, each corresponding to a specific policy experiment: (i) a short-

rate OPP assessing the short-end of the fed funds rate path and (ii) a slope OPP assessing

forward-guidance or asset purchases (QE).16

15The central tendencies exclude the three highest and three lowest projections for each variable in each
year.

16In this paper, we proceed as in Eberly, Stock and Wright (2020), and we do not distinguish separately
forward-guidance and QE, as there is yet no accepted identification strategy to separate the two instruments.
This is an important area for future research as a key lesson from this paper is that further progress on this
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To estimate the impulse responses, we follow Kuttner (2001) and Eberly, Stock and

Wright (2020), and we use as instrumental variables the monetary policy surprises measured

around the FOMC announcements within a 30 minute window. First, we use surprises to the

fed funds rate —the difference between the expected fed funds rate (as implied by current-

month federal funds futures contracts) and the actual fed funds rate— to identify the effects

of a shock to the contemporaneous fed funds rate. Second, we use surprises to the ten-year

on-the-run Treasury yield (orthogonalized with respect to surprises to the current fed funds

rate) to identify the effects of shocks to the slope of the yield curve.

To estimate the impulse responses to these shocks, we use a Bayesian VAR with infla-

tion, unemployment, the fed funds rate, the 10-year bond-fed funds rate spread and the two

monetary policy surprises, which are ordered first. We estimate the reduced form VAR coef-

ficients using Bayesian methods following the default set-up with a Minnesota prior discussed

in Canova (2007, Chapter 10). We compute the subset structural impulse responses R0
y,a and

R0
p,a by (i) computing the impulse responses of all variables to the shocks corresponding to

the monetary surprises and (b) rescaling the responses of inflation and unemployment by the

contemporaneous responses of the fed funds rate (for the short rate impulse responses) and

the spread (for the slope impulse responses). This approach implements SVAR-IV in a con-

venient way which does not require invertibility of the monetary shocks (e.g. Plagborg-Møller

and Wolf, 2021, Corollary 1). The sampling period is 1990-2018.17

The subset OPP statistics

Based on our sufficient statistics estimates, we compute the median subset OPP statistics

and construct confidence bands as described in Section 5. The subset OPP is a vector with

two elements: (i) the short-rate OPP, and (ii) the slope OPP. As constraint on the OPP, we

impose a zero lower bound on the fed funds rate following the approach of Section 4.3.

In terms of confidence interval for the OPP, we will report the 90%, 75% and 60% confi-

dence bands. Importantly, we note that the objective of a policy optimality test is different

from the traditional objective of hypothesis testing. Specifically, from the perspective of the

policy maker it is not clear that high significance is the most interesting/appropriate crite-

ria. Consider the main outcome of the OPP test: “With X% confidence, the baseline policy

choice is not optimal”. A policy maker particularly averse to making a non-optimal decision

may want to change the baseline policy choice at a relatively low X level, say 60% instead

of 90%, as she may want to discard a policy that is non-optimal with a 60% probability. A

trade-off however is that too low a threshold may lead a policy maker to change policy course

front is of direct relevance for the conduct of monetary policy.
17As in Eberly, Stock and Wright (2020), the effect of shocks to the slope of the yield curve is estimated

over 2006-2018, the period during which the Fed was actively trying to affect the slope of the yield curve.
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too often. While such a decision problem is outside the scope of this paper, it highlights that

for the OPP test the classical dichotomy of hypothesis testing (i.e. preference for type 1 vs

type 2 errors) really depends on the preference of the policy maker, e.g., making non-optimal

decisions vs. changing course frequently.

6.2 A retrospective analysis of US monetary policy

Figure 1 displays the time series for the two elements of the subset OPP —the short-rate

OPP and the slope OPP— along with their confidence intervals, as implied by both impulse

response estimation uncertainty and model uncertainty —uncertainty around the estimate of

EtY0
t—. Recall that model uncertainty captures uncertainty about the state of the economy

and from uncertainty about how this state will affect the economy going forward.

Note first how the uncertainty around the OPP can vary over time. This is due to time-

varying uncertainty about the economic outlook. If there is more uncertainty about initial

conditions or about the path of the economy going forward —i.e., more model uncertainty—,

it is more difficult to establish whether a policy is appropriate or not. In the early stage

of the COVID crisis for instance we knew little about the pandemic or about its economic

consequences, and uncertainty in the SEP forecasts rose dramatically leading to larger OPP

uncertainty.

As a general pattern, note how the two OPPs exhibit some signs of pro-cyclicality, being

positive in the late 1990s and 2010s expansions and negative in the early 1990s, early 2000s

and (for the slope OPP) the 2007-2008 recessions.18 We now comment on some of these

most striking misses.

Short-rate OPP We start with the short-rate OPP, which evaluates the optimality of

the contemporaneous fed funds rate, the traditional tool of monetary policy. While the

contemporaneous fed funds rate has not been set exactly at its optimal level since 1990,

the optimal adjustment (in absolute value) is overall relatively small averaging only 25 basis

points over the full sample. There is however a few interesting cases of non-optimal policy

decisions.

In the late 1990s, the short-rate OPP indicates that the fed funds rate was too low by

about 0.25ppt. This finding echoes earlier arguments that the Fed may have found itself

falling behind the curve in the late 1990s tightening cycle (e.g., Blinder and Reis, 2005).

Another case of suboptimal fed funds rate was on the eve of the Great Recession (when

18While this cyclical pattern could be explained with a policy maker always running slightly behind the
curve, it could also be a sign of a policy maker intentionally implementing gradual changes in its policy rate,
at least during tightening cycles (e.g., Rudebusch, 2001). Incorporating such a smoothing motive with the
constrained OPP would be an interesting avenue for future research.
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the ZLB was not yet binding). Then, the short-rate OPP indicates that, given the paths

for inflation and unemployment expected at the time, the FOMC should have lowered rates

faster in early 2008. Afterward, the short-rate OPP was constrained by the zero lower bound.

Over 2016-2019, the OPP is consistently positive, indicating that the fed funds rate is

consistently too low. Since inflation was close to target over that period, these misses come

from a persistently negative unemployment gap: given a too low unemployment rate, the

FOMC should have raised the fed funds rate further.

Most recently, the short-rate OPP shows that the FOMC was too slow in raising the fed

funds rate in the face of mounting inflationary pressures during 2021. We will come back to

this important point in the next section.

Slope OPP The slope OPP assesses the optimality of QE or forward-guidance. During

the Great Recession for instance, the slope OPP indicates that unconventional monetary

policy could have been used more aggressively, a conclusion echoing that of Eberly, Stock

and Wright (2020). In 2009, the slope OPP drops rapidly to below -1ppt and only slowly

revert back to zero. In fact, the slope OPP remains significantly different from zero at high

levels of significance over the whole 2009-2013 period. Overall, these results indicate that a

more active use of QE or forward-guidance holds considerable promise for improvements in

the conduct of policy.

6.3 Improving monetary policy decisions

In this last section, we illustrate how the sufficient statistics approach can be implemented

to provide “actionable” policy recommendations. We consider three instructive case studies:

(i) April 2008 at the onset of the Great Recession, (ii) April 2010 in the midst of the Great

Recession, and (iii) 2021 when the FOMC was confronted with a surge in inflation. While

the first two case studies are only pseudo real time exercises (the impulse responses being

estimated over 1990-2018), the last exercise is entirely real time.

Fed funds rate policy as of April 2008 April 2008 marks the early stage of the financial

crisis; Lehman Brothers was still 6 months away from failing, unemployment was only at

5 percent, and few anticipated the magnitude of the recession that was going to ensue. In

fact, the fed funds rate was still at 2.25ppt so the Fed still had room to use conventional

policies to stimulate activity.19 At that meeting, the fed funds rate was lowered by .25ppt to

19By the end of 2008 however, unemployment had reached 7.3 percent, and the Fed had dropped the fed
funds rate by almost 2ppt (to the zero lower bound) in the span of only three months (September-December)
following the failure of Lehman Brothers in September 2008.
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2 percent, but it remained at that level until October 2008, i.e., until the collapse of Lehman

brothers.

As is clear from the April Tealbook and forecast narratives reported by the FOMC, the

central bank was facing two conflicting issues in April 2008: (i) a marked deterioration in the

growth outlook due declining housing prices and tensions in the financial market, and (ii)

upside risks to inflation coming from “persistent surprises to energy and commodity prices”

(Kohn, 2008).

Figure 2 depicts all the information needed to construct the short-rate OPP. The top row

(filled dots) reports the median FOMC forecasts for the inflation and unemployment gaps,

and the bottom row reports the estimated effect of a 1ppt shock to the contemporaneous

fed funds rate.

The two issues of the time —poor economic outlook and inflationary pressures from high

energy prices— are visible in the FOMC forecasts in the first row of Figure 2. The median

short-rate OPP comes out at −0.30, calling for an additional 25 basis points cuts.20 The

effects of this policy adjustment is depicted by the unfilled dots in the top-panel. We can

see that the FOMC could have brought down expected unemployment faster at the cost of

a small and delayed increase in inflation. In fact, the effect of monetary policy on inflation

is so delayed that the extra inflation would only materialize two years later, i.e., after the

commodities-driven burst in inflation has died down.

Slope (QE) policy as of April 2010 It is interesting to contrast the 2008-M4 situation

with that of two years later; in 2010-M4. There, the Fed funds rate was stuck at zero but the

Fed could have further used unconventional monetary policy to better stabilize the economy.

To test this possibility, we can use the slope OPP statistic.

Figure 3 displays the situation in 2010-M4 where the bottom panels show the effects on

inflation and unemployment of a 1ppt shock to the slope of the yield curve. The median

slope OPP comes at −0.90, calling for for an almost 1ppt decline in the slope of the yield

curve. The unfilled dots plot the counter-factual expected paths for the policy objectives

after adjusting policy with the slope OPP experiment. The FOMC could have brought

down expected unemployment faster in exchange for a small overshoot in expected inflation

in 2011.

Fed funds rate liftoff in 2021 As last case study, we consider fed funds rate decisions

during 2021, when the Fed faced an unexpectedly strong surge in inflation. This case study

serves to illustrate how our sufficient statistics approach can incorporate pre-commitments.

20The 75% confidence interval excludes zero, indicating that there is a less than 75 percent chance that
the contemporaneous fed funds rate was set optimally.
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Indeed, in September 2020 the FOMC statement stipulated that the Committee would not

raise the fed funds rate until “until labor market conditions have reached levels

consistent with the Committee’s assessment of maximum employment and inflation

has risen to 2 percent and is on track to moderately exceed 2 percent for some

time.”

To incorporate this pre-commitment we will compute a constrained OPP, where we im-

pose the constraint that the policy rate remains at the zero lower bound until inflation is

expected to lie at least 0.5 ppt above target for 1 year and unemployment is less than 0.5

ppt above its long-run level (as estimated by the FOMC).21

To contrast the predictions of the constrained and unconstrained OPP, Figure 4 zooms in

on Figure 1 by plotting the short-rate OPP over 2019-2022, showing both the unconstrained

OPP and the constrained OPP. Notice how the unconstrained OPP calls for liftoff as early

as March 2021, with strong evidence against optimality in March 2021 (with a more than

90 percent chance that the fed funds rate is too low), while the constrained OPP does not

call for liftoff until September 2021.

Figures 5 and 6 study these these two decision points (March 2021 and September 2021)

in more detail. The top row reports the median SEP forecasts before and after OPP adjust-

ments (similarly to Figure 2), but the bottom panel now reports the expected policy path

before and after a short-rate OPP adjustment. This panel is shown to illustrate how the

subset OPP can be used in practice to provide policy paths recommendations.

Consider first the case of March 2021 (Figure 5). Inflation was expected to substantially

exceed its target for almost two years. Thus, the unconstrained OPP calls for an immediate

liftoff, with strong evidence against optimality in March 2021: there is a more than 90 percent

chance that the fed funds rate is too low. This conclusion however ignores the September

2020 pre-commitment. For that purpose, we turn to the constrained OPP, and this time we

cannot reject that the policy is optimal: the constrained OPP is zero. The reason is that, as

of March 2021 unemployment was still substantially above target, so that the Fed’s decision

to not liftoff is optimal given its Sept. 2020 pre-commitment. Thus, while monetary policy

could appear to get behind the curve in March 2021 —not reacting enough the the inflation

surge—, the FOMC decision is in fact fully consistent with its Sept. 2020 commitment to

delay liftoff until the labor market has recovered.

In contrast, about six months later in November 2021 (Figure 6) the labor market has

almost fully recovered while inflation has stayed above target (in fact exceeding the levels

expected back in March 2021) and is expected to remain above target for at least a year.

Thus, the Sept. 2020 pre-commitment is no longer binding, and the OPP (constrained or

21These thresholds are only chosen as means of illustration (the FOMC remained vague in terms of
the conditions defining the conditions for liftoff), though the conclusions below are robust to alternative
reasonable thresholds.
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unconstrained) calls for an immediate rise in the Fed funds rate and a steeper policy path

thereafter (green or red line, bottom panel).

7 Conclusion

In this paper, we show that it is not necessary to know the full structure of the economy to

evaluate or even decide on macroeconomic policy. We consider a policy maker facing a time

t decision problem —how to set the policy path today given the state of the economy—,

and we show that two statistics are sufficient to detect and correct non-optimal decisions:

(i) the forecasts for the policy objectives conditional on the policy choice, and (ii) the effects

of policy shocks on the policy objectives. These two statistics are already central and well

understood concepts for policy makers (e.g., Orphanides, 2019). Our contribution is to show

that these two statistics alone can be used to rigorously evaluate and even set policy.

The monetary policy setting considered in this paper is only one of many potential

applications of a sufficient statistics approach to evaluating macro policy problems. Other

fruitful uses include the many areas where macro policy makers must balance difficult trade-

offs in complex settings: fiscal policy (e.g., balancing growth considerations with risks to

debt sustainability), exchange rate management (balancing monetary independence with

exchange rate stability), foreign-reserve management (e.g., balancing the cost of holding

reserves with the insurance against sudden stops in capital flows), or even climate change

policy (e.g., balancing the costs of climate change with the costs of preventive actions),

among others.
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Appendix

Proof of Lemma 1. Note that Assumption 2 imposes that the rule φ0 underlying the baseline
policy (18) leads to a unique equilibrium. Hence, under this rule we can write the solution
as  EtY0

t

EtW0
t

EtP0
t

 =

 Ayy −Ayw −Ayp
−Awy Aww −Awp
−A0

py −A0
pw A0

pp

−1  Byx Byξ 0
Bwx Bwξ 0
B0
px B0

pξ I

 X−t
Ξt

ε0t


=

 C0yx C0yξ R0
y

C0wx C0wξ R0
w

C0px C0pξ R0
p

 X−t
Ξt

ε0t

 , (35)

and we define Γ0
y = (C0yx, C0yξ) and Γ0

p = (C0px, C0pξ). The expressions for the maps, e.g.
Γ0
y,Γ

0
p,R0

y and R0
p, can be derived explicitly from inverting the map, but we will not require

such expressions: existence as imposed by Assumption 2 is sufficient for our purposes. Fi-
nally, E(ε0tS

′
t) = 0 follows as we assume that the policy news shocks are uncorrelated with

the initial conditions X−t and the non-policy news shocks Ξt.

Proof of Lemma 2. Note that Assumption 2 imposes that the rule φ0 underlying the aug-
mented policy (20) leads to a unique equilibrium. Hence, under this rule we can write the
solution as EtYt(δt)

EtWt(δt)
EtPt(δt)

 =

 Ayy −Ayw −Ayp
−Awy Aww −Awp
−A0

py −A0
pw A0

pp

−1  Byx Byξ 0
Bwx Bwξ 0
B0
px B0

pξ I

 X−t
Ξt

ε0t


+

 Ayy −Ayw −Ayp
−Awy Aww −Awp
−A0

py −A0
pw A0

pp

−1  Byx Byξ 0
Bwx Bwξ 0
B0
px B0

pξ I

 0
0
δt


=

 C0yx C0yξ R0
y

C0wx C0wξ R0
w

C0px C0pξ R0
p

 X−t
Ξt

ε0t

+

 C0yx C0yξ R0
y

C0wx C0wξ R0
w

C0px C0pξ R0
p

 0
0
δt

 , (36)

and we again let Γ0
y = (C0yx, C0yξ) and Γ0

p = (C0px, C0pξ). Reading of the display (36) together
with the definitions of EtY0

t and EtP0
t in Lemma 1 gives the desired result.

Proof of Proposition 1. We first characterize the optimal policy that is defined as the solution
to the planners problem (17), that is

min
Yt,Wt,Pt

Lt s.t. (16) . (37)

The Lagrange function for this problem is given by

Lt =Et
{

1

2
Y′tWYt + µ′1(AyyYt − AywWt −AypPt − ByxX−t − ByξΞt)

+µ′2(AwwWt −AwyYt −AwpPt − BwxX−t − BwξΞt)} ,
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where µ1 and µ2 denote the Lagrange multipliers. The first order conditions for Yt,Wt,Pt

are given by

0 =WEtYt +A′yyµ1 −A′wyµ2

0 = −A′ywµ1 +A′wwµ2

0 = −A′ypµ1 −A′wpµ2 ,

and from Assumption 1 it follows that this system of equations implies a unique solution
EtPopt

t .
Next, we consider the fictitious policy problem of a policy maker considering deviating

from the fixed rule (φ0, ε0t ) with some fixed sequence of perturbations δt.

min
Yt,Wt,Pt,δt

Lt s.t. (16) and (18) . (38)

The Lagrange function for this problem is given by

Lft =Et
{

1

2
Y′tWYt + µ′1(AyyYt − AywWt −AypPt − ByxX−t − ByξΞt)

+µ′2(AwwWt −AwyYt −AwpPt − BwxX−t − BwξΞt)

+µ′3(A0
ppPt −A0

pyYt −A0
pwWt − B0

pxX−t − B0
pξΞt − ε0t − δt)

}
,

which leads to the first order conditions for Yt,Wt,Pt, δt given by

0 =WEtYt +A′yyµ1 −A′wyµ2 −A0′

pyµ3

0 = −A′ywµ1 +A′wwµ2 −A0′

pwµ3

0 = −A′ypµ1 −A′wpµ2 +A0′

ppµ3

0 = µ3 .

Since µ3 = 0, it is easy to verify that the first order conditions of the fictitious policy problem
(38) are identical to the first order conditions of the planner’s policy problem (37). Hence
they have the same solution EtPopt

t .
Next, using Lemma (2) we can rewrite the fictitious policy problem (by substituting out

the variables Wt,Pt in terms of δt and the news shocks and initial conditions) as

min
δt
Lt(δt) s.t. EtYt = EtY0

t +Ryδt . (39)

This recalling that the EtP0
t corresponds to the case where δt = 0 we find the necessary

condition for EtP0
t to be optimal as

∇δt Lt(δt)|δt=0 = R0′

yWEtY0
t = 0 .

This shows that the optimality of EtP0
t can be characterized by the conditionR0′

yWEtY0
t = 0.

Since, EtPopt
t is unique we have that EtPopt

t = EtP0
t if and only if R0′

yWEtY0
t = 0.

Proof of Proposition 2. To prove part 1 we note that from Proposition 1 it follows directly
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that EtP0
t = EtPopt

t if and only if δ∗t = −(R0′
yWR0

y)
−1R0′

yWEtY0
t = 0.

To prove part 2 note that by Lemma 2 the OPP adjusted allocation can be written as
EtY0

t +R0
yδ
∗
t . Plugging this into the gradient of problem (39) gives

R0′

yW(EtY0
t +R0

yδ
∗
t ) = R0′

yWEtY0
t −R0′

yWEtY0
t = 0 .

which shows that the OPP adjusted allocation makes the gradient equal to zero and hence
EtP0

t +R0
pδ
∗
t = EtPopt

t .

Proof of Corollary 1. Part 1: From Proposition 1 it follows that R0′
yWEtY0

t = 0 if and only

if EtP0
t = EtPopt

t . Since, R0
a,y is a subset (or linear combination) of the columns of R0

y it

follows that R0′
a,yWEtY0

t 6= 0 implies that EtP0
t 6= EtPopt

t . Part 2: By definition

Lt(0,0) =
1

2
EtY0′

t WY0
t

≥ 1

2
Et(Y0

t +R0
a,yδ

∗
a,t)
′W(Y0

t +R0
a,yδ

∗
a,t)

= Lt(δ∗a,t,0) .

38



Figure 1: A sequence of OPP for Fed monetary policy (1990-2022)
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Notes: Top panels: the fed funds rate (“FFR”, left-panel) and the difference between the 10-year bond
yield and the fed funds rate (“Slope of yield curve”, right panel). The yellow shaded areas denote the
zero-lower bound (ZLB) periods. Bottom panels: time series for the two elements of the subset OPP: the
short-rate OPP (labeled “OPP for contemp. FFR policy”, left panel) and the slope OPP (labeled “OPP for
slope policy”, right panel) over 1990-2022 for a policy maker with a dual inflation–unemployment mandate
(λ = 1). The grey areas capture impulse response and model uncertainty at 60%, 75% and 90% confidence
(from darker to lighter shades). The case studies are marked as points: April 2008 (red), April 2010 (blue),
March 2021 (green) and November 2021 (yellow).
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Figure 2: Fed funds rate policy in April 2008
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2008-M4 (in red and
blue) along with the 68 and 90 percent confidence bands capturing model uncertainty. Filled circles denote
the forecast EtY

0
t , and empty circles denote the forecasts after the short-rate OPP adjustment. Bottom

panel: impulse responses of the inflation and unemployment gaps to a fed funds rate shock with 68 and 90
percent confidence intervals.
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Figure 3: Slope policy in April 2010
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2010-M4 (in red and
blue) along with the 68 and 90 percent confidence bands capturing model uncertainty. Filled circles denote
the forecast EtY

0
t , and empty circles denote the forecasts after the slope policy OPP adjustment. Bottom

panel: impulse responses of the inflation and unemployment gaps to a slope policy shock with 68 and 90
percent confidence intervals.
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Figure 4: A sequence of OPP for Fed funds rate policy (2019-2022)
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Notes: Time series for the short-rate OPP (labeled “OPP for contemp. FFR policy”) over 2019-2022 for
a policy maker with a dual inflation–unemployment mandate (λ = 1). The grey areas capture impulse
response and model uncertainty at 60%, 75% and 90% confidence (from darker to lighter shades). The black
line denotes the median unconstrained OPP, and the red dashed line denotes the OPP constrained by the
Sept. 2020 “no-liftoff commitment” (vertical dashed blue line).
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Figure 5: Fed funds rate policy in March 2021
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2021-M3 (in red
and blue) along with the 68 and 90 percent confidence bands capturing model uncertainty. Filled circles
denote the forecast EtY

0
t , and empty circles denote the forecasts after the short rate unconstrained OPP

adjustment. Bottom panel: baseline policy path EtP
0
t (black line), and modified policy path after adjustment

by the unconstrained short-rate OPP (green line) along the with 68 and 90 percent confidence bands. The
red dashed line denotes the policy path after adjustment by the constrained short-rate OPP.
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Figure 6: Fed funds rate policy in November 2021
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2021-M11 (in red
and blue) along with the 68 and 90 percent confidence bands capturing model uncertainty. Filled circles
denote the forecast EtY

0
t , and empty circles denote the forecasts after the short rate unconstrained OPP

adjustment. Bottom panel: baseline policy path EtP
0
t (black line), and modified policy path after adjustment

by the unconstrained short-rate OPP (green line) along the with 68 and 90 percent confidence bands. The
red dashed line denotes the policy path after adjustment by the constrained short-rate OPP.
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