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We provide the following additional results.

S0: Omitted proofs – main text
S1: Additional motivation
S2: Local identification beyond signed-permutations
S3: Moments and Cumulants — some useful properties
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S5: Computing the asymptotic variance
S6: Additional simulation results
S7: Additional proofs.

S0. Omitted proofs – main text. In this section we collect the omitted proofs from the
main text.

S0.1. Omitted proof from Section 5 .

PROOF OF PROPOSITION 5.18. The condition Q • T ∈ V translates into two equations
(Q • T )12···2 = (Q • T )1···12 = 0. In other words,

Q11

∑
j

Q2j1 · · ·Q2jr−1
T1j +Q12

∑
j

Q2j1 · · ·Q2jr−1
T2j = 0

and

Q21

∑
j

Q1j1 · · ·Q1jr−1
T1j +Q22

∑
j

Q1j1 · · ·Q1jr−1
T2j = 0,

where in both cases the sum goes over all (r−1)-tuples j = (j1, . . . , jr−1) ∈ {1,2}r−1. Note
that, since T is symmetric, the entry Ti depends only on how many times 1 appears in i. Write
tk = Ti if i has k ones, k = 0, . . . , r. With this notation the two equations above simplify to

r−1∑
k=0

(
r− 1

k

)
Q11Q

k
21Q

r−1−k
22 tk+1 +

r−1∑
k=0

(
r− 1

k

)
Q12Q

k
21Q

r−1−k
22 tk = 0

and
r−1∑
k=0

(
r− 1

k

)
Q21Q

k
11Q

r−1−k
12 tk+1 +

r−1∑
k=0

(
r− 1

k

)
Q22Q

k
11Q

r−1−k
12 tk = 0.

If one of the entries of Q is zero then Q is a permutation matrix. So assume that Q has no
zeros. Assume also without loss of generality that Q is a rotation matrix, that is, Q11 =Q22
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and Q12 = −Q21. Denote z = Q21/Q11, which corresponds to the tangent of the rotation
angle and so it can take any non-zero value (zero is not possible as Q21 ̸= 0). With this
notation and after dividing by Qr

11, the two equations become

(S1)
r−1∑
k=0

(
r− 1

k

)
zktk+1 −

r−1∑
k=0

(
r− 1

k

)
zk+1tk = 0

and
r−1∑
k=0

(
r− 1

k

)
(−1)r−1−kzr−ktk+1 +

r−1∑
k=0

(
r− 1

k

)
(−1)r−1−kzr−1−ktk = 0.

It is convenient to rewrite the latter as

(S2)
r−1∑
k=0

(
r− 1

k

)
(−1)kzk+1tr−k +

r−1∑
k=0

(
r− 1

k

)
(−1)kzktr−k−1 = 0.

Using the fact that t1 = tr−1 = 0, (S1) can be written as
r−1∑
k=1

((
r− 1

k

)
tk+1 −

(
r− 1

k− 1

)
tk−1

)
zk = 0.

and (S2) can be written as
r−1∑
k=1

((
r− 1

k

)
tr−k−1 −

(
r− 1

k− 1

)
tr−k+1

)
(−z)k = 0.

Since z ̸= 0, we can divide by it and in both cases we obtain two polynomials of order r− 2.
The first polynomial has coefficients

ak =

(
r− 1

k+ 1

)
tk+2 −

(
r− 1

k

)
tk for k = 0, . . . , r− 2

and the second has coefficients

bk = (−1)k−1

((
r− 1

k+ 1

)
tr−k−2 −

(
r− 1

k

)
tr−k

)
= (−1)kar−k−2.

A common zero for these two polynomials exists if and only if the corresponding resultant
is zero. Resultant is defined as the determinant of a certain matrix populated with the coeffi-
cients of both polynomials. After reordering the columns of this matrix, we obtain

a0 ar−2 0 0 · · · 0 0
a1 −ar−3 a0 ar−2 · · · 0 0
...

...
...

... · · ·
...

...
ar−2 (−1)ra0 ar−3 (−1)r−1a1 · · · a0 ar−2

0 0 ar−2 (−1)ra0 · · · a1 −ar−2

0 0 0 0 · · · a2 ar−3
...

...
...

... · · ·
...

...
0 0 0 0 · · · ar−2 (−1)ra0


.

The first two columns are linearly independent of each other unless the second is a multiple
of the first. Indeed, if r is odd, this is only possible if a0 = · · · = ar−2 = 0 (which can-
not hold under the genericity assumptions). If r is even this is possible if and only if either
ak = (−1)kar−2−k for all k, or ak = (−1)k−1ar−2−k for all k (which cannot hold under the
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genericity assumptions). By the same argument, the third and the fourth column are indepen-
dent of each other and linearly independent of the previous two. Proceeding recursively like
that, we conclude that all columns in this matrix are linearly independent proving that the
two polynomials cannot have common roots. In other words, there is no rotation matrix apart
from the 0◦ and the 90◦ rotation matrices that satisfy Q • T ∈ V .

S0.2. Omitted proofs from Section 6.

PROOF OF LEMMA 6.1. We have LW (A) = 0 if and only if g(A) = 0, which is equiv-
alent A • h2(Y ) = Id and A • hr(Y ) ∈ V . Since (1) holds, we also have A0 • h2(Y ) = I2
and A0 • hr(Y ) ∈ V . It follows that A−1

0 A ∈ O(d), or in other words, A = QA0 for some
Q ∈O(d). Further,

A • hr(Y ) =QA0 • hr(Y ) =Q • hr(ε) ∈ V,

which implies that Q ∈ GT (V) and by Theorem 5.3 or 5.10 we have GT (V) = SP(d).

PROOF OF PROPOSITION 6.2. The proof follows from verifying the conditions for con-
sistency of a general extremum estimator. Specifically, we will verify the conditions of The-
orem 2.1 in Newey and McFadden (1994). We restate the theorem for completeness.

THEOREM S1. Suppose that θ̂ minimizes L̂n(θ) over θ ∈Θ. Assume that there exists a
function L0(θ) such that (a) L0(θ) is uniquely minimized at θ0, (b) L0(θ) is continuous, (c)
Θ is compact and (d) supθ∈Θ |L̂n(θ)−L0(θ)|

p→ 0, then θ̂
p→ θ0.

Next, we verify assumptions (a)-(d) under assumptions (i)-(iv) stated in Proposition 6.2.
First, note that ÂWn

minimizes L̂Wn
(A) and we take LW (A) as L0(θ) in Theorem S1. Sec-

ond, in our case the minimizer of LW (A) is not unique but will correspond to any of the
finite points QA0 for some Q ∈ SP (d). It follows that our consistency result will only be
up to permutation and sign changes of the true A0 (e.g. Chen and Bickel, 2006). Formally,
for (a): suppose that A is such that A ̸=QA0 for any Q ∈ SP(d), then g(A) ̸= 0 by assump-
tion (i) and, since W is positive definite by (ii), we have LW (A)> 0. Hence it follows that
LW (A) is only minimized at QA0 for some Q ∈ SP(d). Condition (b) follows as LW (A)
is a composition of two polynomial maps. Condition (c) follows from (ii). Condition (d) is
assured by the following result.

LEMMA S2. Suppose that {Ys}ns=1 is i.i.d, Wn
p→W , E∥Ys∥r <∞, and A⊂GL(d) is

a compact set. Then

sup
A∈A

|L̂Wn
(A)−LW (A)| p→ 0

PROOF. First, note that given the i.i.d. assumption and the moment condition (iv) we have
that ∥µ̂p − µp(Y )∥ p→ 0 and ∥kp − κr(Y )∥ p→ 0 for any p ≤ r by Lemma S7 part 1. Note
that the norm ∥ · ∥ on the tensor is defined in the usual way as the sum of the squares of all
elements. Using the general notation of Section 6 we have that ∥ĥp − hp(Y )∥ p→ 0 for p≤ r.
Hence,

sup
A∈A

∥A⊗pvec(ĥp − hp(Y ))∥2 ≤ ∥ĥp − hp(Y )∥2 sup
A∈A

∥A⊗p∥2 p→ 0.

Here we used the fact that A is a compact and so, in particular, ∥A⊗p∥2 is bounded on A.
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Using (S28), we get

sup
A∈A

∥m̂n(A)−m(A)∥2 ≤ sup
A∈A

∥A⊗2vec(ĥ2 − h2(Y ))∥2

+ sup
A∈A

∥A⊗rvec(ĥr − hr(Y ))∥2 p→ 0 .

As gS,T (A) is defined in (17) as a projection of mS,T (A) on certain coordinates, we conclude
that

sup
A∈A

∥ĝn(A)− g(A)∥ p→ 0.

By the triangle inequality∣∣∣L̂Wn
(A)−LW (A)

∣∣∣≤ ∣∣∣L̂Wn
(A)−LWn

(A)
∣∣∣+ |LWn

(A)−LW (A)| .

The second term is is readily bounded by ∥g(A)∥2∥Wn −W∥ using the basic operator norm
inequality. To bound the first term, note that, by the triangle inequality∣∣∣L̂Wn

(A)−LWn
(A)
∣∣∣ = ∣∣∥ĝn(A)∥2Wn

− ∥g(A)∥2Wn

∣∣ ≤ ∥ĝn(A)− g(A)∥2Wn
,

which can be bounded by ∥ĝn(A)− g(A)∥2∥Wn∥. We conclude that∣∣∣L̂Wn
(A)−LW (A)

∣∣∣≤ ∥ĝn(A)− g(A)∥2∥Wn∥+ ∥g(A)∥2∥Wn −W∥.

It follows that supA∈A |L̂Wn
(A)−LW (A)| p→ 0 as required.

We may now apply Theorem S1 to conclude that ÂWn

p→QA0 for some Q ∈ SP(d).

S0.3. Proof of Proposition 6.3. The proof follows from verifying the conditions for
asymptotic normality of a generalized moment or distance estimator. Specifically, we will
verify the conditions of Theorem 3.2 in Newey and McFadden (1994). We restate the theo-
rem for completeness.

THEOREM S3. Suppose that θ̂ minimizes L̂n(θ) over θ ∈ Θ with Θ compact, where
L̂n(θ) is of the form ĝn(θ)

′Wnĝn(θ) and Wn
p→ W with W positive semi-definite, θ̂

p→ θ0
and (a) θ0 ∈ Int(Θ), (b) ĝn(θ) is continuously differentiable in a neighborhood N of θ0, (c)
√
nĝn(θ0)

d→ N(0,Ω), (d) there is G(θ) that is continuous at θ0 and supθ∈Θ ∥∇θĝn(θ) −
G(θ)∥ p→ 0, (e) for G=G(θ0), G′WG is nonsingular. Then,

√
n(θ̂− θ0)

d→ N
(
0, (G′WG)−1G′WΩWG′(G′WG)−1

)
.

The loss L̂n(θ) in Theorem S3 corresponds to our L̂n(A). Our ĝn(A) corresponds to their
ĝn(θ). We have ÂWn

p→ Ã0 =QA0 for some Q ∈ SP(d) by Proposition 6.2, and the condi-
tions on the weighting matrix are satisfied by (ii). Condition (a) of Theorem S3 is satisfied
by assumption (v). For (b) note that ĝn(A) is a polynomial map in A and hence smooth.
For (c), by Lemma S7,

√
nvec(m̂n(Ã0)−m(Ã0)) weakly converges to N(0,Σ2,r

h ), where
h = µ or h = k pending whether moments or k-statistics are used to compute m̂n(A). The
variance matrices are defined in (S25) or (S29). However, ĝn(Ã0) is simply a projection
of (m̂n(Ã0)−m(Ã0)) onto the coordinates of V⊥. Therefore, it also weakly converges to
N(0,Σ), where

(S3) Σ=D2,r
I Σ2,r

h D2,r′

I



SUPPLEMENTARY MATERIAL 5

with D2,r
I being a selection matrix that selects the corresponding to the unique entries in

Sr(Rd) ⊕ V⊥. Note that the specific form of Σ depends on whether moment or cumulant
restrictions are used, i.e. h= µ,κ. Here we suppress this dependence in the notation, but in
Appendix S5 where we discuss the estimation of Σ we make it explicit.

We now show that (d) holds. The derivative of the map gS,T (A) in (17) is a linear mapping
from Rd×d to Rdg . It is obtained as a composition of the derivative of mS,T (A) given by the
vectorized version of (KS,A(V ),KT,A(V )), with each component defined in (S6), and the
projection πV . Thus, the derivative is given by mapping V ∈Rd×d to the vector

vec
(
(V,A) • S + (A,V ) • S, πV

(
(V,A, . . . ,A) • T + · · ·+ (A, . . . ,A,V ) • T

))
.

The Jacobian matrix GS,T (A) representing this derivative has d2 columns and the column
corresponding to variable Aij is obtained simply by evaluating the derivative at the unit
matrix Eij ∈ Rd×d. In symbols, this column is given by stacking the vector (Eij ⊗ A +
A⊗Eij)vec(S) over the vector

(S4)
(
(Eij ⊗A⊗ · · · ⊗A) + · · ·+ (A⊗ · · · ⊗A⊗Eij)

)
· vec(T ),

and then selecting only the entries corresponding to the 2-tuples i≤ j and r-tuples in I .
Denote the Jacobian GS,T by G(A) if S = µ2(Y ), T = µr(Y ) and by Ĝ(A) if S = µ̂2,

T = µ̂r (or S = κ2(Y ), T = κr(Y ) and S = k2, T = kr ). The columns of Ĝ(A)−G(A) are
like explained in (S4) with S = µ̂2 − µ2(Y ) and T = µ̂r − µr(Y ) (or S = k2 − κ2(Y ) and
T = kr −κr(Y )). Since ∥S∥ p→ 0 and ∥T∥ p→ 0 by Lemma S7 part 1, and because A is fixed,
the norm of each column converges to zero. In consequence, for each A, ∥Ĝ(A)−G(A)∥ p→
0. Since A is compact and Ĝ(A)−G(A) is smooth, we conclude

(S5) sup
A∈A

∥Ĝ(A)−G(A)∥ p→ 0.

This establishes part (d). To establish part (e) note that W is positive definite and the
Jacobian G(QA0) has full column rank by Lemma S4 below.

LEMMA S4. If V assures identifiability up to a sign permutation matrix, then the matrix
G(QA0) has full column rank for each Q ∈ SP(d).

PROOF. It is enough to show that the derivative of g(A) at QA0 has trivial kernel. We first
analyze the S2(Rd)-part of the derivative noting that µ2(Y ) = κ2(Y ) as EY = 0. Suppose
(QA0) • κ2(Y ) = Id and so the condition (V,QA0) • κ2(Y ) + (QA0, V ) • κ2(Y ) = 0 is
equivalent to

(A−1
0 Q′V, Id) • Id + (Id,A

−1
0 Q′V ) • Id = 0.

Using the derivative KS,A notation given in (S6), we write this last condition as KId,Id(A
−1
0 Q′V ) =

0. Similarly, the V⊥-part implies that KT,Id(A
−1
0 Q′V ) = 0 with T = κr(Y ). This implies that

A−1
0 Q′V = 0 by Lemma S5 and the fact that Id is an isolated point of GT . We conclude that

V must be zero.

Having verified all conditions of S3 we can apply the theorem to prove the first display in
Proposition 6.3. The second display follows as a special case when taking Wn = Σ̂−1

n , noting
that Σ̂−1

n →Σ−1, and replacing W by Σ−1 in the first display.

S1. Additional motivation. In this section we discuss some additional relations that aim
to further highlight the usefulness of the identification results presented in the main text.
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S1.1. Scaled Elliptical LiNGAM. For the model AY = ε, where the elements of ε are
independent and non-Gaussian Shimizu et al. (2006), showed that one can uniquely recover
A if there exists an (unknown) permutation of the rows of A that is lower triangular, i.e. the
model corresponds to a directed acyclic graph. The proposed LiNGAM discovery algorithm
uses ICA and a search over permutations to find the best fitting lower triangular model.

Now reconsider the multiple scaled elliptical components model

AY = ε , with ε = τ ⊙U and U ∼Ud ,

with τ ∈Rd and U independent.
With elliptical errors the LiNGAM algorithm can no longer be used. However, the results

of this paper suggests a natural modification where the ICA algorithm is replaced by the
moment or cumulant based estimation methods that we introduce in Section 6. These methods
are build on the new identification results for the multiple scaled elliptical components model.

Specifically, in Algorithm A of Shimizu et al. (2006) one can replace the ICA method that
is used in step 1 by the minimum distance moment/cumulant estimation method of Section 6.
The other steps of the algorithm do not require adjustment.

S1.2. Invariance. In Section 2 we motivated non-independent component models using
specific examples (e.g. common variance model) as well as by relaxing independence (e.g.
mean independence). In both cases the resulting model still implied sufficient zero restrictions
on the higher order moments/cumulants of ε to ensure the identifiability of A (cf Corollaries
5.7 and 5.15). Here we briefly show that such zero restrictions can also arise from invariance
properties of the distribution of ε.

Suppose that the distribution of ε is the same as the distribution of Dε for every diagonal
matrix D with Dii =±1 for all i= 1, . . . , d (e.g. when ε has spherical distribution). In this
case, by multilinearity of cumulants,

[hr(Dε)]i1···ir = Di1i1 · · ·Dirir [hr(ε)]i1···ir .

Since D is arbitrary, [κr(ε)]i1···ir must be zero unless all indices appear even number of
times. In particular, if r must be even and for example, if r = 4, the only potentially non-zero
cumulants are κiiii and κiijj . These zero patterns correspond exactly with the reflectionally
invariant restrictions introduced in Section 5.2 and as such Corollary 5.15 also ensure the
identifiability of A in AY = ε when the distribution of ε is the same as the distribution of
Dε.

S1.3. Alternative estimation methods. In the main text we outlined some minimum
distance estimation methods for estimating A in AY = ε based on the identifying mo-
ment/cumulant restrictions. We adopted this approach as it can be implemented naturally
based on our identification results. That said, for specific non-independent components mod-
els it is obviously feasible to develop alternative estimators based on the identification results.
To illustrate, we discuss some approaches for the mean independent components model:

a′iY = εi , with E(εi|ε−i) = 0 , for i= 1, . . . , d .

Shao and Zhang (2014) introduce martingale difference correlations to measure the depar-
ture of conditional mean independence between a scalar response variable (i.e. εi) and a
vector predictor variable (i.e. ε−i). This metric is a natural extension of distance correlation
proposed by Székely, Rizzo and Bakirov (2007), which was adopted in Matteson and Tsay
(2017) for independent components analysis. These observations immediately suggest that
jointly minimizing the martingale difference correlations between εi and ε−i for all i with
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respect to A provides an attractive approach for estimating mean independent components
models.

Alternatively, recall that the efficient ICA method of Chen and Bickel (2006) is based
on setting the efficient score function of the semi-parametric ICA model (with independent
errors) to zero. The analytical form of these efficient scores relies on the independence as-
sumption. When relaxing towards mean independence it is straightforward to derive a new
analytical expression for the efficient scores and apply the algorithm of Chen and Bickel
(2006) to set these scores to zero.

S2. Local identification beyond signed-permutations. The results in Section 5 stipu-
late conditions on moment tensors T = µr(ε) or cumulant tensors T = κr(ε) for which A
can be recovered up to sign and permutation. This section gives minimal conditions on V
that ensure that GT is finite. We subsequently use this result to highlight the gap that exists
between restrictions that lead to finite sets and restrictions that lead to signed permutation
sets. This finding has the important implication that it is in general not sufficient to prove that
the Jacobian of the moment or cumulant restrictions is full rank in order to establish that the
identified set is equal to the set of signed permutations.

Let V ⊂ Sr(Rd) be a set given as a set of zeros of a system of polynomials in the coor-
dinated of Sr(Rd) (such set is called an algebraic variety). A subset U ⊆ V is Zariski open
in V if the complement V \ U is also an algebraic variety. In particular, a Zariski open set
is also open in the classical topology. For example, the set of diagonal tensors in Sr(Rd)
with at most one zero on the diagonal forms a Zariski open subset of the set of diagonal ten-
sors. Similarly, the set of reflectionally invariant tensors satisfying the genericity condition
(14) is Zariski open in the set of reflectionally invariant tensors. Note that, in both cases, the
constraints defining V and V \ U were linear.

Recall from (10) that for T = hr(ε) ∈ U we define GT (U) = {Q ∈O(d) : Q • T ∈ U} to
be the set of all orthogonal matrices for which hr(Qε) also lies in U .

DEFINITION S1. The problem of recovering A in (1) is locally identifiable under mo-
ment/cumulant constraints U ⊆ V ⊂ Sr(Rd) with U open in V if every point of GT (U) is an
isolated point of GT (U).

Note that, at least in principle, GT (U) could contain infinitely many isolated points. The
following result establishes link between local identification and finiteness of GT .

PROPOSITION S2. Let U be a Zariski open subset of V . For T ∗ ∈ U we have |GT ∗(U)|<
∞ if and only if each point of GT ∗(U) is an isolated point of GT ∗(U).

PROOF. The right implication is clear. For the left implication first note that GT ∗(U) is a
Zariski open subset of the real algebraic variety GT ∗(V). Indeed, if f1(T ) = · · ·= fk(T ) = 0
are the polynomials, in T , describing V then the polynomials, in Q, describing GT ∗(V) within
O(d) are f1(Q • T ∗) = · · · = fk(Q • T ∗) = 0. Similarly, if V \ U is described within V
by g1(T ) = · · · = gl(T ) = 0. Then GT ∗(V) \ GT ∗(U) is described by g1(Q • T ∗) = · · · =
gl(Q • T ∗) = 0.

Since GT ∗(V) is a real algebraic variety, the set of its isolated points is equal to its zero-
dimensional components and so it must be finite; see for example Theorem 4.6.2 in Cox,
Little and OShea (2013). It is then enough to show that if Q◦ is isolated in GT ∗(U) then
it must be isolated in GT ∗(V). Suppose that Q◦ ∈ GT ∗(U) is not isolated in GT ∗(V). Then
it must lie on an irreducible component of the variety GT ∗(V) of a positive dimension. By
assumption, for this Q◦, g1(Q◦ • T ∗) ̸= 0, . . . , gl(Q◦ • T ∗) ̸= 0. Thus, in any sufficiently
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small neighbourhood of Q◦ there will be a point that lies in GT ∗(V) and g1, . . . , gl evaluate to
something non-zero. In other words, in any sufficiently small neighbourhood of Q◦ there is a
point in GT ∗(U) proving that Q◦ cannot be isolated in GT ∗(U), which leads to contradiction.

REMARK S3. The proof of Proposition S2 also shows that if U is a Zariski open subset
of V and T ∈ U then GT (U) is a Zariski open subset of GT (V). Moreover, Q ∈ GT (U) is
isolated if and only if it is isolated in GT (V).

By the above remark, to show local identifiability it is enough to show that every element
of GT (U) is isolated in GT (V). To show this, we take any point in GT (U) and try to per-
turb it infinitesimally staying in the orthogonal group. We need that every such infinitesimal
perturbation sends the point outside of GT (V).

LEMMA S4. For a fixed T ∈ Sr(Rd), consider the map from Rd×d to Sr(Rd) given by
A 7→A • T . Its derivative at A is a linear mapping on Rd×d defined by

(S6) KT,A(V ) = (V,A, . . . ,A) • T + · · ·+ (A, . . . ,A,V ) • T.

Moreover, if A is invertible, then

(S7) KT,A(V ) = KA•T,Id(V A−1).

PROOF. For any direction V ∈Rd×d, we have

(A+ tV ) • T −A • T

= t(V,A, . . . ,A) • T + · · ·+ t(A, . . . ,A,V ) • T + o(t).

So the proof of the first claim follows by the definition of a derivative. The second claim
follows by direct calculation.

For a given linear subspace V ⊆ Sr(Rd), let πV : Sr(Rd) → V⊥ denote the orthogonal
projection on V⊥. Of course, T ∈ V if and only if πV(T ) = 0. Moreover, if V = V(I) is
given by zero constraints, then πV(T ) simply gives the coordinates Ti for i ∈ I .

In the next result, KId,A(V ) = (V,A) • Id + (A,V ) • Id, which is a special instance of
(S6) for r = 2.

LEMMA S5. Let U be a Zariski open subset of V . A point Q is an isolated point of GT (U)
if and only if

(S8) KId,Q(V ) = 0 and πV(KT,Q(V )) = 0 implies V = 0.

PROOF. Since,

(Q+ tV )(Q+ tV )′ = Id + t(V Q′ +QV ′) + o(t),

V is a direction in the tangent space to O(d) at Q if and only if V Q′+QV ′ = 0. Equivalently,

V Q′ +QV ′ = (V,Q) • Id + (Q,V ) • Id =KId,Q(V ) = 0.

Thus, the first condition KId,Q(V ) = 0 simply restates that V lies in the tangent space of
O(d) at Q.

The proof of Proposition S2 showed that, U ⊆ V is Zariski open, then GT (U) is Zariski
open (and so also open in the classical topology) in GT (U). Thus, if Q is not isolated, every
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neighborhood of Q must contain an element in GT (U) different than Q. In other words, the
point Q ∈ GT (U) is not isolated if and only if there exists a tangent direction V ̸= 0 such that

πV((Q+ tV ) • T )− πV(Q • T ) = πV((Q+ tV ) • T ) = o(t).

Taking the limit t → 0, we get that equivalently πV(KT,Q(V )) = 0. This shows that Q is
isolated if and only if no such non-trivial tangent direction exists.

REMARK S6. In the examples of Section 5, for T ∈ U ⊆ V , we always had GT (U) =
GT (V) = SP(d). The proof of Proposition S2 suggests that, at least in principle GT (U) could
be finite but GT (V) could have components of positive dimension. In the proof of the next
result, we crucially rely on the fact that we compute GT (U) rather than GT (V).

Note that the dimension of the orthogonal group O(d) is
(
d
2

)
, which is then also the min-

imal number of constraints that need to be imposed in order to hope for identifiability. The
main result of this section studies local identifiability with a model defined by the minimal
number of

(
d
2

)
constraints with

I = {(i, j, . . . , j) : 1≤ i < j ≤ d}.

We write V◦ = V(I). Denote

(S9) B(j) = [Tklj···j ]k,l<j ∈ S2(Rj−1)

and define U◦ ⊂ Sr(Rd) as the set of tensors T ∈ V◦ such that,

(S10) det
(
Tj···jIj−1 − (r− 1)B(j)

)
̸= 0 for all j = 2, . . . , d.

THEOREM S7. If T ∈ U◦ then |GT (U◦)|<∞.

PROOF. By Proposition S2 it is enough to show that each point of GT (U◦) is isolated.
By Lemma S5, equivalently for every Q ∈ GT (U◦), if KId,Q(V ) = 0 and πV(KT,Q(V )) = 0
then V = 0. By (S7), KId,Q(V ) = KId,Id(V Q′). Thus, denoting U = V Q′, this condition is
equivalent to saying that U antisymmetric (U + U ′ = 0). We will show that the conditions
above imply that U must be zero. By assumption, we have Uii = 0 and Uij = −Uji for all
i ̸= j. Again using (S7), we get πV(KT,Q(V )) = πV(KQ•T,Id(U)). Denote S :=Q•T . Since
Q ∈ GT (U◦), in particular, S ∈ U◦. The condition πV(KS,Id(U)) = 0 means that for every
i= (i, j, . . . , j) with i < j, (KS,Id(U))ij···j = 0. More explicitly,

0 =

d∑
l=1

UilSlj···j +

d∑
l=1

UjlSilj···j + · · ·+
d∑

l=1

UjlSij···jl

= UijSj···j + (r− 1)

d∑
l=1

UjlSilj···j

=−UjiSj···j + (r− 1)

d∑
l=1

UjlSilj···j

Let uj = (Uj 1, . . . ,Uj j−1) for j = 2, . . . , d. Let first j = d. Using the matrix B(d) defined in
(S9) the equation above gives(

Sd···dId−1 − (r− 1)B(d)
)
ud = 0.
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This has a unique solution ud = 0 if and only if det(Sd···dId−1 − (r − 1)B(d)) ̸= 0, which
holds by (S10). We have shown that the last row of U is zero. Now suppose that we have
established that the rows j + 1, . . . , d of U are zero. If j = 1, we are done by the fact that U
is antisymmetric. So assume j ≥ 2. We will use the fact that Ujl = 0 if l≥ j. For every i < j

0 =−UjiSj···j + (r− 1)
∑
l ̸=j

UjlB
(j)
il =−UjiSj···j + (r− 1)

∑
l<j

B
(j)
il Ulj .

This again has a unique solution if and only if det(Sj···jIj−1− (r−1)B(j)) ̸= 0, which holds
by (S10). Using a recursive argument, we conclude that U = 0.

EXAMPLE S8. Consider V◦ ⊆ S3(R2) given by T122 = 0. Direct calculations show that,
for any given generic T , there are 12 orthogonal matrices such that Q•T ∈ V . There are four
elements given by the diagonal matrices together with 8 additional elements that depend on
T . So, for example, if T111 = 1, T222 = 2, and T112 = 3 then the twelve elements are the four
matrices D and eight matrices of the form

1

5
D

[
3 4
4−3

]
and

1√
2
D

[
1 1
1−1

]
.

Going back to our original motivation, suppose ε is a two-dimensional mean-zero random
vector with var(ε) = I2. If we impose in addition that Eε1ε22 = 0, then, even if we impose
some genericity conditions, the matrix A in (1) is identified only up to the set of 12 elements.
Moreover, as illustrated above, these elements may look nothing like A in the sense that they
are not obtained by simple row permutation and sign swapping.

REMARK S9. The set GT (U◦) is finite but, as illustrated by Example S8, it typically
contains matrices that do not have an easy interpretation. In particular, if d = 2 then V◦ is
given by a single constraint T12···2 = 0. In this case we can show that there are generically
4r complex solutions (which generalized the number 12 in the above example). There are 4
solutions given by the elements of Z2

2 and 4(r − 1) extra solutions, which do not have any
particular structure.

We conclude the following result.

THEOREM S10. Consider the model (1) with Eε= 0, var(ε) = Id and suppose that ei-
ther µr(ε) ∈ U◦ or κr(ε) ∈ U◦. Then A is locally identifiable.

S3. Moments and Cumulants — some useful properties. We collect some results on
moments and cumulants and their sample estimates that are used below for some of the
proofs.

S3.1. Combinatorial relationship between moments and cumulants. Let Πr be the poset
of all set partitions of {1, . . . , r} ordered by refinement. For π ∈Πr we write B ∈ π for a
block in π. The number of blocks of π is denoted by |π|. For example, if r = 3 then Π3 has
5 elements: 123, 1/23, 2/13, 3/12, 1/2/3. They have 1, 2, 2, 2, and 3 blocks respectively.
If i = (i1, . . . , ir) then iB is a subvector of i with indices corresponding to the block B ⊆
{1, . . . , r}. For any multiset {i1, . . . , ir} of the indices {1, . . . , d} we can relate the moments
µr(Y ) to the cumulants (e.g. Speed, 1983).

(S11) [µr(Y )]i1,...,ir =
∑
π∈Πr

∏
B∈π

[κ|B|(Y )]iB ,



SUPPLEMENTARY MATERIAL 11

where B loops over each block in a given partition π. For instance, for r = 3 we have

[µr(Y )]i1,i2,i3 = κi1i2i3 + κi1i2κi3 + κi1i3κi2 + κi2i3κi1 + κi1κi2κi3 ,

where we use the more convenient notation κi1...il = [κl(Y )]i1...il . Similarly, from Speed
(1983) we have

(S12) [κr(Y )]i1,...,ir =
∑
π∈Πr

(−1)|π|−1(|π| − 1)!
∏
B∈π

[µ|B|(Y )]iB .

For example,

[κr(Y )]i1,i2,i3 = µi1i2i3 − µi1µi2i3 − µi2µi1i3 − µi3µi1i2 + 2µi1µi2µi3 ,

using µi1...il = [µl(Y )]i1...il .
The coefficients (−1)|π|−1(|π| − 1)! in (S12) have an important combinatorial interpreta-

tion, which we now briefly explain. If P is a finite partially ordered set (poset) with ordering
≤ we define the zeta function on P ×P as ζ(x, y) = 1 if x≤ y and ζ(x, y) = 0 otherwise.
The Möbius function is then defined by setting m(x, y) = 0 if x ̸≤ y and∑

x≤z≤y

m(x, z)ζ(z, y) =

{
1 if x= y,

0 otherwise.

Fixing a total ordering on P , we can represent the zeta function by a matrix Z and then the
matrix M representing the Möbius function is simply the inverse of Z . If this total ordering
is consistent with the partial ordering of P then both Z and M are upper-triangular and have
ones on the diagonal; see Section 4.1 in Zwiernik (2016) for more details.

For the poset Πr the Möbius function satisfies for any ρ≤ π (ρ is a refinement of π)

(S13) m(ρ,π) = (−1)|ρ|−|π|
∏
B∈π

(|ρB| − 1)!,

where |ρB| is the number of blocks in which ρ subdivides the block B of π. In particular,
denoting by 1 ∈Πr the one-block partition, for every π ∈Πr

m(π,1) = (−1)|π|−1(|π| − 1)!.

To explain how m(π,1) appears in (S12), we recall the Möbius inversion formula, which
becomes clear given the matrix formulation using Z and M = Z−1.

LEMMA S1 (Möbius inversion theorem). Let P be a poset. For two functions c, d on P ,
we have d(x) =

∑
y≤x c(y) for all x ∈P if and only if c(x) =

∑
y≤xm(x, y)d(y).

For example, this result gives the simple formula (S11) that defines moments in terms of
cumulants.

S3.2. Laws of total expectation and cumulance. The law of total expectation is well
known; for two random variables X,H defined on the same probability space we have EX =
E[E(X|H)]. Brillinger (1969) derives an analog result for cumulants.

PROPOSITION S2 (Multivariate law of total cumulants). Let κs(X|H) be the conditional
s-th cumulant tensor of X given a variable H . We have

κr(X) =
∑
π∈Πr

cum
(
(κ|B|(X|H))B∈π

)
,

where for i= (i1, . . . , ir)[
cum((κ|B|(X|H))B∈π)

]
i
= cum((cum(XiB |H))B∈π) .
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It is certainly hard to parse this formula at first so we offer a short discussion. The ex-
pression cum((cum(XiB |H))B∈π) on the right denotes the cumulant of order |π| of the
conditional variances cum(XiB |H) for B ∈ π. A special case of this result is the law of total
covariance.

[κ2(X)]ij = cov(Xi,Xj) = E(cov(Xi,Xj |H)) + cov(E(Xi|H),E(Xj |H)),

where the first summand on the right corresponds to the partition 12 and the second corre-
sponds to the split 1/2. Since there are five possible partitions of {1,2,3} the third order
cumulant can be given in conditional cumulants as

[κ3(X)]ijk = E(cum(Xi,Xj ,Xk|H)) + cov(E(Xi|H), cov(Xj ,Xk|H))

+ cov(E(Xj |H), cov(Xi,Xk|H)) + cov(E(Xk|H), cov(Xi,Xj |H))

+ cum(E(Xi|H),E(Xj |H),E(Xk|H)).

Proposition S2 is useful for example if the components of X are conditionally independent
given H in which case all mixed conditional cumulants vanish. Another scenario is when X
conditionally on H is Gaussian, in which case all higher order conditional tensors vanish.

S3.3. Estimating moments and cumulants. Given a sample {Ys}ns=1, unbiased estimates
for the rth order moment tensor µr(Y ) are obtained by computing the sample moments

(S14) [µ̂r]i1...ir =
1

n

n∑
s=1

Ys,i1Ys,i2 . . . Ys,ir .

Using our multilinear notation we can more compactly write

(S15) µ̂r =
1

n
Y ′ • Ir ∈ Sr(Rd).

where Ir ∈ Sr(Rn) is the identity tensor, that is, the diagonal tensor satisfying (Ir)t···t = 1
for all 1≤ t≤ n.

Unbiased estimates for the cumulants are computed using multivariate k-statistics Speed
(1983), which generalize classical k-statistics introduced by Fisher (1930). For a collection
of useful results on k-statistics see also (McCullagh, 2018, Chapter 4).

Specifically, the entries of the rth order k-statistic used to estimate the cumulant
[κr(Y )]i1...ir are given by (see (McCullagh, 2018, (4.5)-(4.7)))

(S16) [kr]i1,...,ir =
1

n

n∑
t1=1

· · ·
n∑

tr=1

Φt1,...,trYt1,i1 · · ·Ytr,ir

with Φ ∈ Sr(Rn) satisfying

Φt1···tr = (−1)ν−1 1(
n−1
ν−1

) ,
where ν ≤ n is the number of distinct indices in (t1, . . . , tn). Let Y ∈ Rn×d be the data
matrix. More compactly, we have

(S17) kr =
1

n
Y ′ •Φ ∈ Sr(Rd).

We note the following important result; see Proposition 4.3 in Speed (1986).

PROPOSITION S3. The k-statistic in (S16) forms a U-statistic. In particular, it is unbi-
ased and it has the minimal variance among all unbiased estimators.
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Besides being unbiased and efficient, an additional benefit of working with kr statistics is
that there are several statistical packages available that compute them, e.g. kStatistics
for R and PyMoments for Python. The first package uses the powerful machinery of um-
bral calculus to make the symbolic computations efficient Di Nardo, Guarino and Senato
(2009).

S3.4. k-statistics and sample cumulants. For later considerations we need to understand
better the relation between kr and the natural plug-in estimator κ̂r , which is obtained by
first estimating the raw moments and then plugging them into (S12). The relevant sample
moments that allow to compute κ̂r from (S12) are summarized in µ̂p for p≤ r.

If B ⊆ [n] then write IB for the identity tensor in S|B|(Rn). For any partition π ∈Πr the
tensor product

⊗
B∈π IB ∈ Sr(Rn) satisfies[⊗

B∈π
IB

]
t1···tr

=
∏
B∈π

[IB]tB =

{
1 ti = tj whenever i, j ∈B ∈ π,

0 otherwise.

For every π ∈Πr , define coefficients

(S18) c(π) =
∑
ρ≤π

m(ρ,π)(−1)|ρ|−1 1(
n−1
|ρ|−1

) = n
∑
ρ≤π

m(ρ,π)m(ρ,1)
1

(n)|ρ|
,

where m is the Möbius function on Πr given in (S13) and (n)k = n(n− 1) · · · (n− k+1) is
the corresponding falling factor.

LEMMA S4. We have

Φ =
∑
π∈Πr

c(π)
⊗
B∈π

IB,

which gives an alternative formula for k-statistics

[kr]i1,...,ir =
∑
π∈Πr

n|π|−1c(π)
∏
B∈π

µ̂iB .

PROOF. For any t1, . . . , tr let ν be the number of distinct elements in this sequence and
let π∗ be the partition [r] with ν blocks corresponding to indices that are equal. We have(∑

π∈Πr

c(π)
⊗
B∈π

IB

)
t1···tr

=
∑
ρ≤π∗

c(ρ) = (−1)ν−1 1(
n−1
ν−1

) = Φt1···tr ,

where the first equality follows by the definition of π∗ and
⊗

B IB , and the second equality
follows directly by the Möbius inversion formula on Πr as given in Lemma S1.

The second claim follows from the fact that

kr
(S17)
=

1

n
Y ′ •Φ =

1

n

∑
π∈Πr

c(π)
⊗
B∈π

(Y ′ • IB)
(S15)
=

∑
π∈Πr

n|π|−1c(π)
⊗
B∈π

µ̂B,

where µ̂B is the symmetric tensor containing all |B| order sample moments among the vari-
ables in B.

In the analysis of the asymptotic difference between kr and the plug-in estimator κ̂r we
will use the following lemma.
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LEMMA S5. For every π ∈Πr we have

n|π|−1c(π)−m(π,1) = O(n−1).

PROOF. As we noted in the proof of Lemma S4, the Möbius inversion formula in
Lemma S1 gives that

(S19)
∑
ρ≤π

c(ρ) = (−1)|π|−1 1(
n−1
n−|π|

) .
Let 0 ∈Πr be the minimal partition into r singleton blocks. By (S19), applied to π = 0,

nr−1c(0) = (−1)r−1 nr−1(
n−1
n−r

) = m(0,1)
nr

(n)r
,

where (n)r = n · · · (n−r+1) is the corresponding falling factorial. In particular, nr−1c(0) =
m(0,1) + O(n−1). Now suppose the claim is proven for all partitions with more than l
blocks. Let π be a partition with exactly l blocks. If ρ < π then |ρ| > l and n|ρ|−1c(ρ) =
m(ρ,1) +O(n−1) so

nl−1c(ρ) = nl−|ρ|n|ρ|−1c(ρ) = nl−|ρ|m(ρ,1) +O(nl−|ρ|−1) =O(nl−|ρ|).

This assures that

nl−1
∑
ρ≤π

c(ρ) = nl−1c(π) +O(n−1).

Using (S19) in the same way as above, we get that n|π|−1c(π) =m(π,1) +O(n−1) and now
the result follows by recursion.

S3.5. Vectorizations of tensors. The dimension of the space of symmetric tensors
Sr(Rd) is

(
d+r−1

r

)
. Like for symmetric matrices, it is often convenient to view T ∈ Sr(Rd)

as a general tensor in Rd×···×d. In this case vec(T ) ∈ Rdr

is a vector obtained from all the
entries of T .

Throughout the paper we largely avoided vectorization. This operation is however hard
to circumvent in the asymptotic considerations. If we make a specific claim about the joint
Gaussianity of the entries of a random tensor T , we could use a more invariant approach
of Eaton (2007). However, using vectorizations, makes the calculations more direct without
referring to abstract linear algebra.

In this context we also often rely on the matrix-vector version of the tensor equation S =
A • T

(S20) vec(S) = A⊗r · vec(T ),

where A⊗r =A⊗ · · · ⊗A if the r-th Kronecker power of A.

S3.6. Asymptotic distribution of sample statistics. To derive the asymptotic distribution
of the minimum distance estimators in Section 6 we require the asymptotic distribution of
the sample moments or the k-statistics.

Specifically, we need the joint distribution of the sample moments/cumulants that are re-
stricted to zero. To derive these in a convenient way we define mS,T : Rd×d → S2(Rd) ⊕
Sr(Rd) to be

(S21) mS,T (A) = (A • S − Id, A • T ) .
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The cases that we consider are S = h2(Y ), T = hr(Y ), in which case we write simply m(A),
and S = ĥ2, T = ĥr , in which case we write m̂n(A). Here, ĥr denotes either the sample mo-
ments, denoted by µ̂r , or the rth order k-statistic, denoted by kr , which are computed from
a given sample {Ys}ns=1 as discussed above. It is worth pointing out that these results gen-
eralize existing results (e.g. Jammalamadaka, Taufer and Terdik, 2021) for the asymptotic
analysis of cumulant estimates to higher order tensors.

Sample moments
The sample moments of Y are defined as in (S14). When using moments the distance

measure m̂n(A) (see (S21)) depends on the tensors µ̂2 and µ̂r . As formalized in the lemma
below, we have that under suitable moment assumptions that

(S22) µ̂p
p→ µp(Y ) ∀ p≤ r ,

and

(S23)
√
nvec(µ̂2 − µ2(Y ), µ̂r − µr(Y ))

d→N(0, V ) ,

where V is the asymptotic variance matrix with entries

Vi,j = cov(Yi1 · · ·Yik , Yi1 · · ·Yil) k, l ∈ {2, r} .

We note that V is not positive definite as vectorizing the tensors does not imply that the entries
are unique. We will correct for this when required below. Further V can be consistently
estimated by its sample version.

Given (S23) we can use (S20) to derive the limiting distribution of m̂n(A) for moments.
We have

√
nvec(m̂n(A)−m(A)) = [A⊗2,A⊗r] ·

√
nvec(µ̂2 − µ2(Y ), µ̂r − µr(Y ))

d→N(0,A2,rV A2,r′)(S24)

where A2,r = [A⊗2,A⊗r]. Let the asymptotic variance matrix be denoted by

(S25) Σ2,r
µ =A2,rV A2,r′ .

k-statistics
Next, we provide analog steps for the k-statistics. First, let µ≤r be the vector containing

all moments of a random vector Y of order up to r (it has dimension
(
d+r
r

)
). Formula (S12)

gives an explicit function for κr(Y ) in terms of µ≤r . For the vectorized tensor κr(Y ) we
define the Jacobian F =∇µ′

≤r
vec(κr(Y )), which is a dr ×

(
d+r
r

)
matrix. This matrix is not

a full rank but only because κr(Y ) is a symmetric tensor which has many repeated entries.
The submatrix obtained from F by taking the rows corresponding to the unique entries of
κr(Y ) has full row rank. This follows because for any two r-tuples 1≤ i1 ≤ · · · ≤ ir ≤ d and
1≤ j1 ≤ · · · ≤ jr ≤ d we have that

∂κi1···ir
∂µj1···jr

=

{
1 if (i1, . . . , ir) = (j1, . . . , jr),

0 otherwise,

and so, this submatrix contains the identity matrix.
Under suitable moment conditions we have

µ̂≤r
p→µ≤r and

√
n (µ̂≤r −µ≤r)

d→N(0,H)
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and since µ≤r only includes unique moments we may conclude that H is positive definite.
As in Appendix S3.4, denote κ̂r to be the image of µ̂≤r under the map (S12). It then

follows from the delta method that

(S26)
√
nvec(κ̂r − κr(Y ))

d→ N(0, FHF ′) .

We emphasize that this particular estimator of cumulants will not be of direct interest. What
we need is the form of the covariance matrix in (S26). We will show that k-statistics kr have
the same asymptotic distribution.

LEMMA S6. If E∥Ys∥2r <∞ we have that
√
nvec(kr − κr(Y ))

d→ N(0, FHF ′) .

PROOF. By (S26) and Slutsky lemma, it is enough to show that
√
n (kr − κ̂r)

p→ 0. By
Lemma S4,

[kr − κ̂r]i1···ir =
∑
π∈Πr

(n|π|−1c(π)−m(π,1))
∏
B∈π

µ̂iB ,

where the coefficients c(π) are defined in (S18). By Lemma S5, n|π|−1c(π) − m(π,1) =
O(n−1) for all π ∈Πr and so in particular

√
n(n|π|−1c(π)−m(π,1)) = o(1).

Under the stated moment assumption µ̂iB =Op(1) and so [kr − κ̂r]i1···ir = oP (1), which
completes the proof.

By Lemma S6, every linear transformation of
√
nvec(kr − κr(Y )) will be also Gaussian.

We will be in particular interested in transformations A⊗rvec(kr − κr(Y )) as motivated by
the multilinear action of A on Sr(Rd) (cf. (S20)). We have

√
nA⊗rvec(kr − κr(Y ))

d→ N(0,A⊗rFH(A⊗rF )′) .

A similar analysis can be given if κr(Y ) is complemented with some other lower order cumu-
lants. We will use one version of that. Let F 2,r be the Jacobian matrix of the transformation
from µ≤r to cumulants vec(κ2(Y ), κr(Y )) ∈ Rd2+dr

. By exactly the same arguments as
above we get

(S27)
√
nvec(k2 − κ2(Y ),kr − κr(Y ))

d→ N(0, F 2,rH(F 2,r)′) .

Recall from (S21) that mS,T (A) = (A • S − Id, A • T ) and consider m(A) and m̂n(A) as
defined by cumulants and k-statistics in Section 6.

(S28) vec(m̂n(A)−m(A)) = [A⊗2,A⊗r] · vec(k2 − κ2(Y ),kr − κr(Y )).

We will write A2,r = [A⊗2,A⊗r] and, using (S27), we immediately conclude
√
nvec(m̂n(A)−m(A))

d→ N(0,A2,rF 2,rH(A2,rF 2,r)′) .

Let this asymptotic covariance matrix be denoted by

(S29) Σ2,r
k =A2,rF 2,rH(A2,rF 2,r)′.

We summarize these general results in the following lemma adopting the notation required
for the main text.
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LEMMA S7. Suppose {Ys}ns=1 is i.i.d.

1. if E∥Ys∥r <∞, then µ̂p − µp(Y )
p→ 0 and kp − κp(Y )

p→ 0 for all p≤ r.
2. if E∥Ys∥2r <∞, then

√
nvec(m̂n(A)−m(A))

d→N(0,Σ2,r
h ) h= µ,k ,

where h = µ or h = k depends on whether m̂n(A) and m(A) are based on moments or
cumulants, respectively. We have that the moment based variance Σ2,r

µ is defined in (S25)
and the cumulant based variance Σ2,r

k in (S29).

S4. Additional inference tools. In this section we complement the inference Section 6
with some additional tools that can be used to select the appropriate moment/cumulant zero
restrictions in a data driven way.

S4.1. Testing over-identifying restrictions. While zero restrictions on higher order mo-
ments or cumulants can be motivated from several angles (cf. the discussion in Section 2), it
is useful to test ex-post whether the restrictions indeed appear to hold in a given application.
In the setting where dg is strictly greater then d2, i.e. the total number of restrictions is larger
when compared to the number of parameters in A, we can conduct a general specification
test following the approach outlined in Hansen (1982).

PROPOSITION S1. If the conditions of Proposition 6.3 hold we have that as n→∞

Λn := nL̂Σ̂−1
n
(ÂΣ̂−1

n
)

d→ χ2(dg − d2) .

The proposition implies that Λn can be viewed as a test statistic for verifying the identify-
ing restrictions. Specifically, when g(QA0) ̸= 0 the statistic Λn diverges under most alterna-
tives. That said, if any of the other assumptions fails, e.g. the moment condition, the statistic
will also fail to converge to a χ2(dg − d2) random variable. This implies that we should view
Proposition S1 as a general test for model misspecification.

A more refined test can be formulated when sufficient confidence exists in a subset of the
identifying restrictions. To set this up let g(A) = (g1(A), g2(A)) be a partition of the identi-
fying moment/cumulant restrictions such that g1(A) has dimension dg1 ≥ d2. We propose a
test for whether the additional identifying restrictions g2(A) are valid.

Denote as earlier Λn = nL̂Σ̂−1
n
(ÂΣ̂−1

n
) and let Λ0

n be similarly defined by for a smaller set
of identifying restrictions.

PROPOSITION S2. If the conditions of Proposition 6.3 hold we have that as n→∞

Cn := Λn −Λ0
n

d→ χ2(dg − dg1) .

The test statistic Cn allows to verify whether adding the additional identifying restrictions
g2(A) is valid. The test rejects when g2(QA0) ̸= 0, that is, when the additional restrictions
do not hold.

S5. Computing the asymptotic variance. In this section we give computational details
for estimating the asymptotic variance matrices Σ and S as defined in Proposition 6.3. Start-
ing with Σ (see equation (21)) we first recall that Σ is really Σh and the expression depends
on whether moment or cumulant restrictions are used. For moments we obtained

Σµ =D2,r
I Σ2,r

µ D2,r′

I with Σ2,r
µ =A2,rV A2,r′ ,
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and for cumulants

Σκ =D2,r
I Σ2,r

κ D2,r′

I with Σ2,r
κ =A2,rF 2,rH(A2,rF 2,r)′ ,

where D2,r
I is a selection matrix that selects the corresponding to the unique entries in

Sr(Rd) ⊕ V⊥, V and H contain the covariances of vec(µ̂2, µ̂r) and µ̂≤r , respectively,
A2,r = [A⊗2,A⊗r] and F 2,r is the Jacobian matrix of the transformation from µ≤r to cu-
mulants (κ2, κr), see Section S3.6 for explicit definitions.

The moment matrices V and H and the Jacobian matrix F 2,r can be estimated by replacing
the population moments of µr(Y ) by the sample moments µ̂r . Further, A2,r = [A⊗2,A⊗r]

can replaced by its estimate Â2,r
Wn

= [Â⊗2
Wn

, Â⊗r
Wn

]. Combining we obtain the estimates

Σ̂µ,n =D2,r
I V̂ D2,r′

I and Σ̂k,n =D2,r
I Â2,r

Wn
F̂ 2,rĤ(Â2,r

Wn
F̂ 2,r)′D2,r′

I .

While these plug-in estimators are conceptually straightforward, for cumulants it does require
determining the Jacobian F 2,r , which can be a tedious task.

Therefore, for cumulant restriction we recommend estimating Σh using a simple bootstrap.
Let ε̂n = ÂWn

Yn denote the n×1 vector of residuals. We can resample these residuals (with
replacement) to get ε̂∗n and construct bootstrap draws of ĝn(ÂWn

), say g∗n. Repeating this B
times allows to compute the bootstrap variance estimate

Σ̂n/n=
1

B

B∑
b=1

(g∗,bn − ḡ∗n)(g
∗,b′
n − ḡ∗n)

′ with ḡ∗n =
1

B

B∑
b=1

g∗,bn .

The 1/n comes from the definition Σ= limn→∞ var(
√
nĝn(QA0)). Using the bootstrap has

the benefit that no additional analytical calculations are needed and evaluating g∗,bn only re-
quires computing the sample statistics µp(Y ) or kp, for p = 2, r, for each bootstrap draw
ε̂∗n. The validity of the bootstrap follows as we have a random sample {Yi}, ÂWn

is
√
n-

consistent for A and asymptotically normal (cf Propositions 6.2 and 6.3) and ĝn(A) is a
polynomial map in A and hence smooth.

While the bootstrap is conceptually attractive, it is worth nothing that, at least in principle,
the covariance between two k-statistics ki1···ir and kj1···jr can be computed exactly for any
given sample size using the general formula for cumulants of k-statistics as given in Sec-
tion 4.2.3 in McCullagh (2018). Although the covariance is arguably the simplest cumulant,
the formula still involves combinatorial quantities that are hard to obtain. Given the moments
of Y , we could also use the explicit formula (S17) to obtain the covariance in any given case
by noting that

Evec(kr)vec(kr)′ =
1

n2
E
[
(Y ′)⊗rvec(Φ)vec(Φ)′Y ⊗r

]
.

Note however that vec(Φ) has nr entries with many of them repeated, so the naive approach
is very inefficient. An efficient, perhaps umbral, approach to these symbolic computations
could help to obtain better estimates of A.

Next, we compute the asymptotic variance S = (G′Σ−1G)−1, where G=G(QA0) is the
Jacobian matrix corresponding to g(A). Combining the estimator ÂWn

and the map (S4)
provides the estimate for G. Combining this an estimate for Σ as defined above allows to
estimate S.

S6. Additional numerical results. In this section we provide additional simulation re-
sults that complement Section 7. We compare the performance of the minimum distance
estimators across different measures, dimensions and sample sizes.
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S6.1. Alternative performance measures. We start by providing the same results as in
the main text but now measuring the accuracy of the different procedures in terms of the
Frobenius distance dF (e.g. Chen and Bickel, 2006) which is often referred to as the minimum
distance index (e.g. Ilmonen et al., 2010) and can be defined as

dF (ÂWn
,A0) = min

Q∈SP (d)

1

d2
∥Â−1

Wn
QA0 − Id∥F ,

where the scaling by d2 is an arbitrary choice.
For this distance measure Tables S1 and S2 replicate Tables 2 and 3 from the main text.

We find that the minimum distance estimator based on the reflectionally invariant restrictions
remains to perform well across all specifications. Also for skewed densities the minimum
distance estimator based on the diagonal third order tensor restrictions performs well.

For the common variance model, i.e. Table S1, there are a few differences with respect
to the Amari errors that are worth pointing out. First, TICA performs relatively less well.
Further inspection showed that is largely due to the small sample size and the performance
of TICA improves considerably when n increases. Second, some of the ICA methods (e.g.
FastICA and JADE) perform well for t(5), SKU and KU densities.

For the multiple scaled elliptical model, i.e. Table S2, the results are very similar when
compared to the Amari errors, and the minimum distance estimator based on the reflectionally
invariant restrictions is always preferred.

S6.2. Larger experiments common variance model. In the main text in Figure 1 we
showed the results for the common variance model with d = 5 and n = 200,1000 corre-
sponding to two specific distributions for the errors ηi: the t(5) distribution as well as the
Bi-Modal distribution BM . Here we show the same results but also include the other densi-
ties from Table 1.

Specifically, Figures S1-S3 show all experiments that we conducted for the common vari-
ance model. The following additional results are worth mentioning. First, when the true er-
rors correspond to the normal distribution the variances of all estimators are large and do
not shrink noticeably when n increases. The reason under normal errors for ηi the deviations
from the Gaussian distribution of εi = τηi, with independent τ ∼ gamma(1,1), is very close
to the Gaussian distribution and hence the parameters are poorly identified.

Second, for n= 1000 we find that the diagonal tensor restrictions based on the third mo-
ments work well for the Skewed Unimodal (SKU) density. For n= 200 the evidence is not
convincing, but for larger sample sizes these restrictions in combination with the efficient
weighting matrix yield good performance. Only TICA, which assumes that K is known,
leads to better performance.

Third, in general TICA works well for Student’s t type densities like, t(5) and Kurtotic
Unimodal (KU). The reason is that, in addition to exploiting knowledge of K , the objective
function of TICA is close in shape to the Student’s t density (see Hyvärinen, Hoyer and Inki,
2001, equation 3.10). As such TICA behaves like the MLE estimator for these densities.

Fourth, for all other densities which impose larger deviations from the Student t shape
the estimators that were based on the reflectional invariant restrictions always perform better.
The benefits are most clearly shown for bi modal densities.

Fifth, using the efficient weighting matrix shows most advantages for large sample sizes.
The reason is that estimating the efficient weighting matrix accurately requires a large sample
size. This improvement in weighting matrix accuracy is directly reflected in the Amari errors.
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TABLE S1
MINIMUM DISTANCE: COMMON VARIANCE MODEL

Non-Independent Components Analysis
Method N t(5) SKU KU BM SBM SKB TRI CL ACL

µ
d,I
3 0.16 0.13 0.13 0.13 0.18 0.20 0.16 0.18 0.16 0.15

µ
d,Σ̂−1

n
3 0.14 0.12 0.11 0.12 0.15 0.17 0.13 0.15 0.13 0.13

µ
r,I
4 0.11 0.12 0.12 0.11 0.10 0.08 0.11 0.10 0.12 0.11

µ
r,Σ̂−1

n
4 0.11 0.11 0.11 0.10 0.09 0.05 0.10 0.08 0.10 0.11

TICA 0.19 0.18 0.18 0.18 0.23 0.25 0.22 0.24 0.20 0.20
Independent Components Analysis

Method N t(5) SKU KU BM SBM SKB TRI CL ACL
Fast 0.14 0.09 0.11 0.08 0.20 0.25 0.18 0.21 0.15 0.15
JADE 0.15 0.10 0.11 0.07 0.23 0.26 0.21 0.23 0.18 0.17
Kernel 0.15 0.11 0.12 0.10 0.20 0.25 0.18 0.21 0.16 0.16
ProDen 0.15 0.79 0.30 0.64 0.23 0.60 0.21 0.26 0.17 2.78
Efficient 0.14 0.17 0.16 0.17 0.14 0.15 0.14 0.14 0.14 0.14
NPML 0.14 0.14 0.14 0.14 0.16 0.15 0.15 0.15 0.15 0.15

Notes: The table reports the average Minimum Distance Index (across S = 1000 simulations) for
data sampled from the common variance model (3) with d = 2 and n = 200. The columns corre-
spond to the different errors considered for the components of η, see Table 1. The top panel reports
the errors for the minimum distance methods and Topographical ICA (TICA). For the minimum
distance methods we consider diagonal (d) and reflectionally invariant (r) restrictions for different
order tensors µ3, µ4, combined with weighting matrices Wn = Id, Σ̂

−1
n . The bottom panel reports

comparison results for different independent component analysis methods: FastICA (Hyvärinen,
1999), JADE Cardoso and Souloumiac (1993), kernel ICA (Bach and Jordan, 2003), ProDenICA
(Hastie and Tibshirani, 2002), efficient ICA (Chen and Bickel, 2006) and non-parametric ML ICA
(Samworth and Yuan, 2012).

S6.3. Larger experiments multiple scaled elliptical. Next, we revisit the nICA model
with multiple scaled elliptical errors as presented in (4). For this model comparative simula-
tion results were shown in Section 7.2 for d= 2 and n= 200. Here we consider the specifi-
cations where d= 5 and n= 200,1000. Figures S4-S6 show the results. Overall, the results
for the scaled elliptical components model are quite similar across the densities for ηi. As
in Table 3 the means of the Amari errors are roughly equal, but there exist some variations
in the variances. First, except for the Gaussian density (which does not yield an identified
model) when n increases the variances generally decrease. Second, the evidence in favor of
the efficient weighting matrix is mixed often the identity weighting matrix is preferred. This
is most likely due to the fact that the multiple scaled elliptical model has quite heavy tails
which may invalidate the moment assumptions needed for the consistent estimation of the
weighting matrix, or at least reduce the accuracy of the weighting matrix estimate.
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TABLE S2
MINIMUM DISTANCE: SCALED ELLIPTICAL

Non-Independent Components Analysis
Method N t(5) SKU KU BM SBM SKB TRI CL ACL

µ
d,I
3 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

µ
d,Σ̂−1

n
3 0.14 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.13 0.13

µ
r,I
4 0.08 0.09 0.09 0.08 0.08 0.08 0.09 0.09 0.09 0.09

µ
r,Σ̂−1

n
4 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08

TICA 0.15 0.16 0.15 0.16 0.14 0.15 0.15 0.15 0.15 0.15

Independent Components Analysis
Method N t(5) SKU KU BM SBM SKB TRI CL ACL
Fast 0.14 0.13 0.14 0.14 0.13 0.14 0.14 0.14 0.13 0.14
JADE 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.14 0.14
Kernel 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
ProDen 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15
Efficient 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
NPML 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Notes: The table reports the average Minimum Distance errors (across S = 1000 simulations) for
data sampled from the multiple scaled elliptical model (4) with d = 2 and n = 200. The columns
correspond to the different errors considered for the components of η, see Table 1. The top panel
reports the errors for the minimum distance methods and Topographical ICA (TICA). For the
minimum distance methods we consider diagonal (d) and reflectionally invariant (r) restrictions
for different order tensors µ3, µ4, combined with weighting matrices Wn = Id, Σ̂

−1
n . The bot-

tom panel reports comparison results for different independent component analysis methods: Fas-
tICA (Hyvärinen, 1999), JADE Cardoso and Souloumiac (1993), kernel ICA (Bach and Jordan,
2003), ProDenICA (Hastie and Tibshirani, 2002), efficient ICA (Chen and Bickel, 2006) and non-
parametric ML ICA (Samworth and Yuan, 2012).
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Fig S1: COMMON VARIANCE EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the common variance model (3). The different settings for the simulations designs
are described in the titles and the x-labels indicate the different estimation methods used.
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Fig S2: COMMON VARIANCE EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the common variance model (3). The different settings for the simulations designs
are described in the titles and the x-labels indicate the different estimation methods used.
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Fig S3: COMMON VARIANCE EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the common variance model (3). The different settings for the simulations designs
are described in the titles and the x-labels indicate the different estimation methods used.
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Fig S4: SCALED ELLIPTICAL EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the multiple scaled elliptical components model (4). The different settings for the
simulations designs are described in the titles and the x-labels indicate the different estimation
methods used.



26

Fig S5: SCALED ELLIPTICAL EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the multiple scaled elliptical components model (4). The different settings for the
simulations designs are described in the titles and the x-labels indicate the different estimation
methods used.
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Fig S6: SCALED ELLIPTICAL EXPERIMENTS
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Notes: The figure shows the boxplots for the Amari errors (across S = 100 simulations) for data
sampled from the multiple scaled elliptical components model (4). The different settings for the
simulations designs are described in the titles and the x-labels indicate the different estimation
methods used.
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S7. Omitted proofs.

S7.1. Proof of Proposition S1. Let Ã0 =QA0. Noting that ĝn(ÂΣ̂−1
n
) minimizes ∥ · ∥2Wn

when taking Wn = Σ̂−1
n , we get that ĝn(ÂΣ̂−1

n
) = 0. Using Taylor’s theorem we get that

0 = Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
) = Σ̂−1/2

n

√
nĝn(Ã0) + Σ̂−1/2

n Ĝ(Ā)
√
nvec(ÂΣ̂−1

n
− Ã0),

where Ā lies on the segment between Ã0 and ÂΣ̂−1
n

. Pre-multiplying by Ĝ(Ā)′Σ̂
−1/2
n and

rearranging gives
√
nvec(ÂΣ̂−1

n
− Ã0) =−[Ĝ(Ā)′Σ̂−1

n Ĝ(Ā)]−1Ĝ(Ā)′Σ̂−1
n

√
nĝn(Ã0) .

Substituting
√
nvec(ÂΣ̂−1

n
− Ã0) back into the expansion above gives

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
) = N̂ Σ̂−1/2

n

√
nĝn(Ã0)

where

N̂ = Idg
− Σ̂−1/2

n Ĝ(Ā)[Ĝ(Ā)′Σ̂−1
n Ĝ(Ā)]−1Ĝ(Ā)′Σ̂−1/2

n .

By the discussion preceding (S3), we have Σ−1/2√nĝn(Ã0)
d→ Z ∼N(0, Idg

). Note that this

random variable differs from Σ̂
−1/2
n

√
nĝn(Ã0)

d→ Z ∼N(0, Idg
) only by something that con-

verges to zero in probability, as Σ̂n
p→ Σ. By Slutsky’s lemma we have Σ̂−1/2√nĝn(Ã0)

d→
Z ∼ N(0, Idg

), and from Proposition 6.2, equation (S5) and Σ̂n
p→ Σ and the continuous

mapping theorem, we get

(S30) N̂
p→N = Idg

−Σ−1/2G(Ã0)[G(Ã0)
′Σ−1G(Ã0)]

−1G(Ã0)
′Σ−1/2 .

We note that N is a projection matrix of rank dg − d2. Combining we get

L̂Σ̂−1
n
(ÂΣ̂−1

n
) =
(
Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
)
)′ (

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1

n
)
)

d→ Z ′NZ ∼ χ2(dg − d2) ,

where the last step follows from Rao (1973, page 186).

S7.2. Proof of Proposition S2. From the proof of Proposition S1 we have

Σ̂−1/2
n

√
nĝn(ÂΣ̂−1) =NΣ−1/2√nĝn(Ã0) + op(1),

where are N is the projection matrix defined in (S30). Let ĝ1,n, G1, N1 be the equivalent
quantities to ĝn, G, N just computed for the smaller set of identifying restrictions. Using
similar arguments we get

Σ̂
−1/2
11

√
nĝ1,n(ÂΣ̂−1

11
) =N1Σ

−1/2
11

√
nĝ1,n(Ã0) + op(1)

=N1Σ
−1/2
11 [Idg1

: 0dg1
×dg

]Σ1/2Σ−1/2√nĝn(Ã0)

+ op(1) .

Define Ξ = Σ
−1/2
11 [Idm1

: 0dg1
×dg

]Σ1/2 and J =N1Ξ. Note that N is idempotent and set
B ≡ J ′J =Ξ′N1Ξ. We show that (i) N −B is idempotent and (ii) N −B has rank dg − dg1 .
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First, letting N = Idg
− P with P = Σ−1/2G(Ã0)[G(Ã0)

′Σ−1G(Ã0)]
−1G(Ã0)

′Σ−1/2, we
have

BN =B −BP (P ′P )−1P ′

=B −Ξ′N1ΞP (P ′P )−1P ′ ,

and N1ΞP = N1P1 = 0, such that BN = B. Using similar step we find that NB = B.
Finally, consider BB for which we have

BB =Ξ′N1ΞΞ
′N1Ξ

=Ξ′N1Σ
−1/2
11 Σ11Σ

−1/2
11 N1Ξ

=Ξ′N1Ξ=B

Combining we get that (N −B)(N −B) =N −B. For (ii) note that since N −B is idem-
potent we have rank(N −B) = Tr(N −B) = dg − dg1 . To complete the proof note that

Cn =
√
nĝn(Ã0)

′Σ̂−1/2′

n [N −B]Σ̂−1/2
n

√
nĝn(Ã0) + op(1)

d→ Z ′[N −B]Z ∼ χ2(dg − dg1) .
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