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Throughout this document, references to lemmas, equations etc. which start with a “S” are

references to this document. Those which consist of just a number refer to the main text.

S1 A more general model

S1.1 Model setup, ULAN and the effective score

In this section we extend the approach in the main paper to the more general model:

Yi = B(b,Xi) + A(α, σ,Xi)
−1ϵi , i = 1, . . . , n , (S1)

under Assumptions S1 and S2 below, which are weakened versions of Assumptions 1 and 2

respectively. This version of the model allows (a) (parametric) conditional heteroskedasticity

in the reduced form error A(α, σ,Xi)
−1ϵi and (b) the conditional mean E[Yi|Xi] = B(b,Xi)

to be a non-linear function of Xi, known up to a finite dimensional parameter b.

Assumption S1. Suppose that for all (α, β) ∈ A× B,

1. A(α, σ,X) is non-singular for all X;

2. (α, σ) 7→ A(α, σ,X) and b 7→ B(b,X) are continuously differentiable for all X.

Define the partial derivative matrices Dα,l(α, σ,X) = ∂A(α, σ,X)/∂αl, for l = 1, . . . , Lα

Dσ,l(α, σ,X) = ∂A(α, σ,X)/∂σl, for l = 1, . . . , Lσ and Db,l := ∂B(b,X)/∂bl for l = 1, . . . , Lb.

Further, for each k, j ∈ {1, . . . , K}, l ∈ {1, . . . , Lα} andm ∈ {1, . . . , Lσ} define ζαl,k,j(α, σ,X) :=

e′kDα,l(α, σ,X)A(α, σ,X)−1ej and ζσm,k,j := e′kDσ,m(α, σ,X)A(α, σ,X)−1ej. With this nota-

tion, for all (α, β) ∈ A× B

3. (α, σ) → ζαl,k,j(α, σ,X) and (α, σ) → ζσm,k,j(α, σ,X) are locally Lipschitz continuous for

all j, k, l,m considered and all X.

4. ∥A(α, σ,X)∥, ∥A(α, σ,X)−1∥, ∥Dα,l(α, σ,X)∥ and ∥Dσ,l(α, σ,X)∥ are locally (in (α, σ))

bounded.

Assumption S2. For ϵi = (ϵi,1, . . . , ϵi,K)
′ in model (S1), each component ϵi,k has a con-

tinuously differentiable root density (with respect to Lebesgue measure on R). We write

the density as ηk with log density score ϕk(x) = ∂ log ηk(x)/∂x. We assume that for all

k = 1, . . . , K and some δ > 0

1. Eϵi,k = 0, Eϵ2i,k = 1, Eϵ4+δ
i,k <∞, E(ϵ4i,k)− 1 > E(ϵ3i,k)2, and Eϕ4+δ

k (ϵi,k) <∞;
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2. Eϕk(ϵi,k) = 0, Eϕk(ϵi,k)ϵi,k = −1, Eϕk(ϵi,k)ϵ
2
i,k = 0 and Eϕk(ϵi,k)ϵ

3
i,k = −3;

3. ϵi,k is independent of ϵi,l for all k ̸= l;

4. η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such that if

X̃i ∼ η0, E[∥Db,l(b + ϱ,Xi)∥4+δ] ≤ Db,l(b) < ∞ for all b ∈ B, all ϱ in a neighbourhood

of zero and all l = 1, . . . , Lb;

5. ϵi and X̃i are independent.

Remark 1. If A(α, σ,X) = A(α, σ) and B(b,X) = vec−1(b)X then Assumptions S1 and S2

are implied by Assumptions 1 and 2 respectively.

Formally, the considered model is the collection

PΘ = {Pθ : θ ∈ Θ} , (S2)

where each Pθ is the law of the data Wi = (Yi, X̃i) which lies in W ⊂ RK+d−1. The

parameter space Θ has the form Θ = A×B×H, where A ⊂ RLα , B ⊂ RLβ . H has the form

Z ×
∏K

k=1 H , where Z is the space of density functions η0 and H is the space of density

functions ηk such that if X̃ ∼ η0 and ϵk ∼ ηk then Assumption S2 parts 1, 3, 4 and 5 hold.S1.

We write a typical element of Θ as θ = (α, β, η), where β = (b′, σ′)′ and it is understood

that α ∈ A, β ∈ B and η ∈ H. In what follows we will let Vθ,i := Yi − B(b,Xi) be

the reduced form error so that A(α, σ,Xi)Vθ,i = ϵi. Each Pθ is absolutely continuous with

respect to Lebesgue measure on RK+d−1, with (Lebesgue) density given by

pθ(Wi) = | detA(α, σ,Xi)|
K∏
k=1

ηk(e
′
kA(α, σ,Xi)Vθ,i)× η0(X̃i) , (S3)

and hence log-density

ℓθ(Wi) = log | detA(α, σ,Xi)|+
K∑
k=1

log ηk(e
′
kA(α, σ,Xi)Vθ,i) + log η0(X̃i) . (S4)

The differentiable paths we consider have the following form.

Let H = H0 ×
∏K

k=1Hk, where each Hk is as defined following (6). Given a direction

(g, h) ∈ RL × H, the measures Pt are those corresponding to the density with form as in

(S3) evaluated at θt := (γ + tg, ηt) where the k-th coordinate of ηt is ηhk
k,t := ηk(1 + thk)

(k = 0, . . . , K).

S1Part 2 of Assumption S2 serves to simplify the form of the effective score function derived in Lemma S3
and is not necessary to set up the model.
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We have the following analogues of Lemmas 1, 2 and 3.

Lemma S1. Suppose Assumptions S1 and S2 hold and that (α, β) is an interior point of

A × B. For each (g, h) ∈ RL × H := V, the map t 7→ Pθt is a differentiable path, with

score function g′ℓ̇θ + h̃0 +
∑K

k=1 h̃k, where ℓ̇θ := ∇γ log pθ, h̃0(W ) := h0(X̃) and h̃k(W ) :=

hk(e
′
kA(α, σ,X)Vθ). ℓ̇θ has the form ℓ̇θ = (ℓ̇′θ,α, ℓ̇

′
θ,b, ℓ̇

′
θ,σ)

′, with

ℓ̇θ,α,l(W ) :=
K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,j(α, σ,X)ϕk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζαl,k,k(α, σ,X)[ϕk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1];

ℓ̇θ,b,l(W ) := −
K∑
k=1

ϕk (e
′
kA(α, σ,X)Vθ) e

′
kA(α, σ,X)Db,l(b,X);

ℓ̇θ,σ,l(W ) :=
K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,j(α, σ,X)ϕk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζσl,k,k(α, σ,X)[ϕk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1].

Proof. Let g = (a, ϱ, s) ∈ RLα × RLb × RLσ . The log density of W under θt is then

ℓθt(W ) = log pθt(W )

= log η0(X̃) + log(1 + th0(X̃)) + log | det(A(α + ta, σ + ts,X))|

+
K∑
k=1

log ηk (e
′
kA(α + ta, σ + ts,X)(Y −B(b+ tϱ,X)))

+
K∑
k=1

log (1 + thk (e
′
kA(α + ta, σ + ts,X)(Y −B(b+ tϱ,X)))) .

By Lemma S6, t 7→ √
pθt is continuously differentiable (pointwise) in a neighbourhood V

of 0. Moreover, if we define qt(W ) :=
∂ log pθx (W )

∂x

∣∣
x=t

and Qt := Pθtqt(W )2, Qt is finite and

continuous in a neighbourhood of 0 by the uniformly integrability of {qt(W )2 : t ∈ V} along

with the pointwise continuity of t 7→ qt(W ), both of which follow from Lemma S6. Hence,

by Lemma 1.8 in van der Vaart (2002), t 7→ Pθt is a differentiable path with score function
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given by the derivative of ℓθt(W ) at t = 0, which is:

K∑
k=1

ϕk (e
′
kA(α, σ,X)Vθ) e

′
k

Lα∑
l=1

alDα,l(α, σ,X)Vθ +
Lα∑
l=1

al tr(A(α, σ,X)−1Dα,l(α, σ,X))

+
K∑
k=1

ϕk (e
′
kA(α, σ,X)Vθ) e

′
k

Lσ∑
l=1

slDσ,l(α, σ,X)Vθ +
Lσ∑
l=1

sl tr(A(α, σ,X)−1Dσ,l(α, σ,X))

−
K∑
k=1

ϕk (e
′
kA(α, σ,X)Vθ) e

′
kA(α, σ,X)

Lb∑
l=1

ϱlDb,l(b,X)

+ h0(X̃) +
K∑
k=1

hk (e
′
kA(α, σ,X)Vθ) .

(S5)

We can re-write the two expressions involving the trace as follows: for any x ∈ {α, σ} and

appropriate index l we have

K∑
k=1

ϕk(e
′
kA(α, σ,X)Vθ)e

′
kDx,l(α, σ,X)Vθ + tr(A(α, σ,X)−1Dx,l(α, σ,X))

=
K∑
k=1

ϕk(e
′
kA(α, σ,X)Vθ)e

′
kDx,l(α, σ,X)A(α, σ,X)−1ϵ+ tr(Dx,l(α, σ,X)A(α, σ,X)−1)

=
K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j(α, σ,X)ϕk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

ζxl,k,k(α, σ,X)[ϕk(e
′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1],

for ζxl,k,j(α, σ,X) := e′kDx,l(α, σ,X)A(α, σ,X)−1ej. We may therefore write the derivative

(S5) as a′ℓ̇θ,α + ϱ′ℓ̇θ,b + s′ℓ̇θ,σ + ℓ̇θ,η,h where

ℓ̇θ,η,h := h0(X̃) +
K∑
k=1

hk (e
′
kA(α, σ,X)Vθ) = h̃0(W ) +

K∑
k=1

h̃k(W ).

An elementary calculation reveals that g′ℓ̇θ = a′ℓ̇θ,α + ϱ′ℓ̇θ,b + s′ℓ̇θ,σ.

Lemma S2. Suppose that Assumptions S1 and S2 hold and that (α, β) is an interior point

of A× B. For (g, h) ∈ V let

θn(g, h) := θ + n−1/2(g, η0h0, . . . , ηKhK).
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For any convergent sequence (gn, hn) → (g, h) (all in V), define Rn as

Rn := log
n∏

i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− 1√

n

n∑
i=1

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]
+
1

2
E

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]2
.

Then,

1. Rn
Pθ−→ 0,

2. Under Pθ,

1√
n

n∑
i=1

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]
⇝ N

0,E

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]2 ,

3. The (product) measures P n
θn

and P n
θ are mutually contiguous.

Proof. The proof proceeds verbatim as that of Lemma 2 on replacing Lemma 1 with Lemma

S1.

Lemma S3. Suppose Assumptions S1 and S2 hold. Then the components of ℓ̃θ are as follows.

For x = α or x = σ,

ℓ̃θ,x,l(W ) =
K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j(α, σ,X)ϕk(e
′
kA(α, σ,X)Vθ)e

′
jA(α, σ,X)Vθ

+
K∑
k=1

(
ζxl,k,k(α, σ,X)− E

[
ζxl,k,k(α, σ,X)

])
[ϕk(e

′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1]

+
K∑
k=1

E
[
ζxl,k,k(α, σ,X)

]
(τk,1e

′
kA(α, σ,X)Vθ + τk,2κ(e

′
kA(α, σ,X)Vθ)),

with l in {1, . . . , Lα} or {1, . . . , Lσ} (respectively); for l = 1, . . . , Lb,

ℓ̃θ,b,l(W ) = −
K∑
k=1

ϕk(e
′
kA(α, σ,X)Vθ)e

′
k (A(α, σ,X)Db,l(b,X)− E[A(α, σ,X)Db,l(b,X)])

+
K∑
k=1

e′kE[A(α, σ,X)Db,l(b,X)](ςk,1e
′
kA(α, σ,X)Vθ + ςk,2κ(e

′
kA(α, σ,X)Vθ));

where the expectations are taken under Pθ and

τk :=M−1
k

(
0

−2

)
, ςk :=M−1

k

(
1

0

)
, for Mk :=

(
1 E[ϵ3k]

E[ϵ3k] E[ϵ4k]− 1

)
.
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Proof. For each hk ∈ Hk, define the corresponding h̃k as in the statement of Lemma S1

and let H̃k collect all such h̃k formed with hk ranging over Hk.
S2 By the definition of ℓ̃θ in

equation (31) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component

is (a) in (H̃0 + · · ·+ H̃K)
⊥ and (b) ℓ̇θ,x − ℓ̃θ,x ∈ cl(H̃0 + · · ·+ H̃K), the form of which is given

in Lemma S8.

Case 1: x = α or x = σ. For (a) note that if j ̸= k, then

E
[
ζxl,k,j(α, σ,X)ϕk(ϵk)ϵjh0(X̃)

]
= E

[
ζxl,k,j(α, σ,X)ϕk(ϵk)h0(X̃)

]
E[ϵj] = 0

E
[
ζxl,k,j(α, σ,X)ϕk(ϵk)ϵjhm(ϵm)

]
= E

[
ζxl,k,j(α, σ,X)

]
E [ϕk(ϵk)ϵjhm(ϵm)] = 0

where the last equality follows from independence and the fact that m must differ from

one of k, j. Additionally, writing ζ̃xl,k,j(X) := ζxl,k,j(α, σ,X) − E[ζxl,k,j(α, σ,X)] and ζ̄xl,k,j :=

E[ζxl,k,j(α, σ,X)], by independence and our moment assumptions (i.e. Assumption S2)

E
[(
ζ̃xl,k,j(X)[ϕk(ϵk)ϵk + 1] + ζ̄xl,k,j[τk,1ϵk + τk,2κ(ϵk)]

)
h0(X̃)

]
= E

[
ζ̃xl,k,j(X)h0(X̃)

]
E [ϕk(ϵk)ϵk + 1] + ζ̄xl,k,jE [τk,1ϵk + τk,2κ(ϵk)]E[h0(X̃)]

= 0,

and again using independence and the definition of Hk,

E
[(
ζ̃xl,k,j(X)[ϕk(ϵk)ϵk + 1] + ζ̄xl,k,j[τk,1ϵk + τk,2κ(ϵk)]

)
hj(ϵj)

]
= E

[
ζ̃xl,k,j(X)

]
E [(ϕk(ϵk)ϵk + 1)hj(ϵj)] + ζ̄xl,k,jE [(τk,1ϵk + τk,2κ(ϵk))hj(ϵj)]

= 0.

Since ϵk = e′kA(α, σ,X)Vθ, these observations and the form of ℓ̃θ,x establish (a). For (b), it

suffices to show that

fk(ϵk) := ϕk(ϵk)ϵk + 1− τk,1ϵk − τk,2κ(ϵk) ∈ Hk.

That E[fk(ϵk)] = 0 and E[fk(ϵk)2] < ∞ follows immediately from Assumption S2. That

additionally E[fk(ϵk)ϵk] = E[fk(ϵk)κ(ϵk)] = 0 is ensured by the choice of τk.

S2That is, for each h0 ∈ H0 define h̃0 : W → R acccording to h̃0(W ) := h0(X̃) and let H̃0 collect the
h̃0 functions so formed. Similarly, for each hk ∈ Hk (k = 1, . . . ,K), define h̃k : W → R according to
h̃k(W ) := hk(e

′
kA(α, σ,X)Vθ) and let let H̃k collect the h̃k functions so formed.
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Case 2: x = b. For (a) let m(X) := A(α, σ,X)Db,l(b,X) and µ = E[m(X)]. Then,

E[ϕk(ϵk)e
′
k(m(X)− µ)h0(X̃)] = E[ϕk(ϵk)]E[e′k(m(X)− µ)h0(X̃)] = 0

E[ϕk(ϵk)e
′
k(m(X)− µ)hj(ϵj)] = E[ϕk(ϵk)hj(ϵj)]E[e′k(m(X)− µ)] = 0

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))h0(X̃)] = e′kµE[ςk,1ϵk + ςk,2κ(ϵk)]E[h0(X̃)] = 0;

for k ̸= j by independence

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))hj(ϵj)] = e′kµE[ςk,1ϵk + ςk,2κ(ϵk)]E[hj(ϵj)] = 0

whilst for k = j, the definition of Hk ensures that

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))hk(ϵk)] = e′kµE[ςk,1ϵkhk(ϵk) + ςk,2κ(ϵk)hk(ϵk)] = 0.

Since ϵk = e′kA(α, σ,X)Vθ, these observations and the form of ℓ̃θ,b establish (a). For (b) it

suffices to show that

qk(ϵk) := (ϕk(ϵk) + ςk,1ϵk + ςk,2κ(ϵk)) (−e′kµ) ∈ Hk.

That E[qk(ϵk)] = 0 and E[qk(ϵk)2] < ∞ follows immediately from Assumption S2. That

additionally E[qk(ϵk)ϵk] = E[qk(ϵk)κ(ϵk)] = 0 is ensured by the choice of ςk.

S1.2 Log density score estimation

We work with a high level condition analagous to Assumption 4, adapted to the more general

setting of equation (S1).

Assumption S3. Let νn be as in Assumption 3. We have estimators ϕ̂k,n,γ such that for (a)

any sequence with elements θn = (α0, βn, η) ∈ Θ where (βn)n∈N is a deterministic sequence

with
√
n∥βn − β∥ = O(1) and (b) any array (Zn,i)n∈N,i≤n with i.i.d. rows and such that

EZn,i = 0, supn∈N EZ2
n,i <∞ and Zn,i ⊥⊥ ϵi,k for each n, i, and k,

1

n

n∑
i=1

[
ϕ̂k,n,γn(Ak,γn,iVθn,i)− ϕk(Ak,γn,iVθn,i)

]
Zn,i = oPn

θn
(n−1/2), (S6)

1

n

n∑
i=1

([
ϕ̂k,n,γn(Ak,γn,iVθn,i)− ϕk(Ak,γn,iVθn,i)

]
Zn,i

)2
= oPn

θn
(νn). (S7)

where Ak,γn,i := e′kA(α0, σn, Xi), Vθn,i := Yi −B(bn, Xi).
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We additionally impose the following condition, which is necessary in this more general

setup, due to the term

K∑
k=1

(
ζxl,k,k(α, σ,X)− E

[
ζxl,k,k(α, σ,X)

])
[ϕk(e

′
kA(α, σ,X)Vθ)e

′
kA(α, σ,X)Vθ + 1] ,

which appears in ℓ̃θ,x for x ∈ {α, σ} when A(α, σ,X) depends on X.S3

Assumption S4. In the context of Assumption S3, additionally

1

n

n∑
i=1

([
ϕ̂k,n,γn(Ak,γn,iVθn,i)− ϕk(Ak,γn,iVθn,i)

]
Ak,γn,iVθn,i

)2
= oPn

θn
(νn). (S8)

Lemmas S4 and S5 below demonstrate that the estimator defined in (11) satisfies the

high-level conditions in Assumptions S3 and S4 provided Assumption S2 holds along with

Assumption 3 and some additional conditions given in the statement of Lemma S5. The

proofs of these Lemmas are given in Section S5 below.

Lemma S4. Suppose Assumptions S2 and 3 hold. Then, ϕ̂k,n,γ as defined in (11) satisfies

Assumption S3.

Lemma S5. Suppose Assumptions S2 and 3 hold. Additionally suppose that for some Mk,n ≥
max{|ΞL

k,n|, |ΞU
k,n|},

1. δ−3
k,n∆k,nE

[
ϵ2i,k1{|ϵi,k| > Mk,n}

]
= o(νn);

2. E
[
ϵ4i,k1{|ϵi,k| > Mk,n}

]
= o(ν2n);

3. M2
k,n∥ϕ

(3)
k,n∥2∞δ6k,n = o(νn).

Then, ϕ̂k,n,γ as defined in (11) satisfies Assumption S4.

Remark 2. For ϱ < ρ where E|ϵk|ρ <∞, one has

E[|ϵk|ϱ1{|ϵk| > Mk,n}] = E
[
|ϵk|ρ|ϵk|ϱ−ρ1{|ϵk| > Mk,n}

]
≤ E|ϵk|ρMϱ−ρ

k,n ,

and thus the speed at which Mk,n is required to increase to satisfy conditions 1, 2 in Lemma

S5 decreases with the number of finite moments of ϵk.

S3Compare the forms of the effective scores given in Lemmas 3 and S3.
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S1.3 The test and its asymptotic properties

Since ℓ̃θ has a slightly different form in the setting considered in this section (compared to

that considered in the main text; compare Lemmas 3 and S3), we amend our estimator ℓ̂n,γ

accordingly. First let τ̂k,n,γ and ς̂k,n,γ be given by

τ̂k,n,γ = M̂−1
k,n,γ

(
0

−2

)
, ς̂k,n,γ = M̂−1

k,n,γ

(
1

0

)
, M̂k,n,γ =

1

n

n∑
i=1

(
1 (Ak,γ,iVγ,i)

3

(Ak,γ,iVγ,i)
3 (Ak,γ,iVγ,i)

4 − 1

)
.

The estimators for the components corresponding to α and σ are:

ℓ̂n,γ,α,l(Wi) :=
K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,j,γ,iϕ̂k,n,γ(Ak,γ,iVγ,i)Aj,γ,iVγ,i

+
K∑
k=1

(
ζαl,k,k,γ,i − ζ̄αl,k,k,n,γ

) (
ϕ̂k,n,γ(Ak,γ,iVγ,i)Ak,γ,iVγ,i + 1

)
+

K∑
k=1

ζ̄αl,k,k,n,γ (τ̂k,n,γ,1Ak,γ,iVγ,i + τ̂k,n,γ,2κ(Ak,γ,iVγ,i)) ;

ℓ̂n,γ,σ,l(Wi) :=
K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,j,γ,iϕ̂k,n,γ(Ak,γ,iVγ,i)Aj,γ,iVγ,i

+
K∑
k=1

(
ζσl,k,k,γ,i − ζ̄σl,k,k,n,γ

) (
ϕ̂k,n,γ(Ak,γ,iVγ,i)Ak,γ,iVγ,i + 1

)
+

K∑
k=1

ζ̄σl,k,k,n,γ (τ̂k,n,γ,1Ak,γ,iVγ,i + τ̂k,n,γ,2κ(Ak,γ,iVγ,i)) ;

, (S9)

with ζαl,k,j,γ,i := ζαl,k,j(α, σ,Xi), ζ̄
α
l,k,j,n,γ := 1

n

∑n
i=1 ζ

α
l,k,j,γ,i, Ak,γ,i := e′kA(α, σ,Xi), Vγ,i := Vθ,i :=

Yi −BXi, X̄n := 1
n

∑n
i=1Xi. For the components corresponding to b,

ℓ̂n,γ,b(Wi) := −
K∑
k=1

ϕ̂k,n,γ(Ak,γ,iVγ,i)

(
Ak,γ,i(X

′
i ⊗ IK)−

1

n

n∑
i=1

[Ak,γ,i(X
′
i ⊗ IK)]

)

+
K∑
k=1

(
1

n

n∑
i=1

[Ak,γ,i(X
′
i ⊗ IK)]

)
(ς̂k,n,γ,1Ak,γ,iVγ,i + ς̂k,n,γ,2κ (Ak,γ,iVγ,i)) .

(S10)

The estimator În,γ is given by

În,γ :=
1

n

n∑
i=1

ℓ̂n,γ(Wi)ℓ̂n,γ(Wi)
′.

10



Remark 3. If A(α, σ,X) = A(α, σ) and B(b,X) = vec−1(b)X (as considered in the main

text), the estimators given in (S9) and (S10) are numerically identical to those in (9).

Ŝγ is then defined as in (14) and we have the following Theorem (cf. Theorem 1), the

proof of which is analogous to that of Theorem 1.

Theorem S1. Suppose that Assumptions S1, S2, S3 and S4 hold and suppose that β is

an interior point of B. Let rn = rank(Ît
γ̄) and denote by cn the 1 − a quantile of the χ2

rn

distribution, for any a ∈ (0, 1). Then

lim sup
n→∞

sup
θ∈Θ0,n

Pθ(Ŝγ̄ > cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0 where θ0 = (α0, β, η).

Proof. It suffices to show the conditions of Corollary 1 hold. There are 5 conditions which

we verify in order: items 1, 2, 3 & equation (38) of the statement of Theorem 2.

Condition 1: This follows verbatim as the demonstration of Condition 1 in the proof of

Theorem 1 on replacing Lemma 1 with Lemma S1.

Condition 2: This follows by repeated addition and subtraction along with the conver-

gence in probability and stochastic boundedness results of Lemma S11, the moment condi-

tions in Assumption S2 and the local boundedness given by Assumption S1 Part 4.

Condition 3: This follows verbatim as the demonstration of Condition 3 in the proof

of Theorem 1 on replacing “the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ) and β 7→
A(α, σ)” with “the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ,X) and β 7→ A(α, σ,X)”

and removing the reference to Lemma 4.S4

Condition 4: This follows verbatim as the demonstration of Condition 4 in the proof of

Theorem 1 on replacing Lemmas 1 and 2 with Lemmas S1 and S2.

S2 Supporting results for the main Theorems

The following supporting results apply to the model introduced in Section S1. The model

considered in the main text is a special case of this model with A(α, σ,X) = A(α, σ) and

B(b,X) = vec−1(b)X, for which Assumptions 1, 2 and 4 imply S1, S2 and S3 respectively.

In consequence the results in this section apply a fortiori to the case considered in the main

text.

S4Lemmas S4 and S5 are not necessary here since the high level Assumptions S3 and S4 are directly
assumed.
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Lemma S6. Suppose that Assumptions S1 and S2 hold and that (α, β) is an interior point

of A× B. Let φ(g, h) = (g, η0h0, . . . , ηKhK). Then

1. t 7→
√
pθ+tφ(g,h)(w) is (pointwise) continuously differentiable in a neighbourhood U ⊂

[0,∞) of zero.S5

Moreover, if we define qθ,(g,h),u(w) :=
∂ log pθ+tφ(g,h)(w)

∂t
|t=u, then

2. {qθ,(g,h),u(W )2 : u ∈ V} is uniformly Pθ+uφ(g,h) – integrable for some neighbourhood of

zero V ⊂ U .

Proof. For all sufficiently small t, θ + tφ(g, h) ∈ Θ; in such an interval, the continuous

differentiability follows directly from Assumptions S1 and S2 along with the definition of H.

Under Pθ+uφ(g,h), qθ,(g,h),u(W ) has the same law as

Zu :=
h0(X̃)

1 + uh0(X̃)
+

K∑
k=1

hk(ϵk) + uh′k(ϵk)e
′
k[D1,uVθ+uφ(g,h) + D2,u]

1 + uhk(ϵk)

+ tr(A(α + ua, σ + us,X)−1D1,u) +
K∑
k=1

ϕk(ϵk)e
′
k[D1,uVθ+uφ(g,h) + D2,u].

(S11)

where

D1,u :=
Lα∑
l=1

alDα,l(α + ua, σ + us,X) +
Lσ∑
l=1

slDσ,l(α + ua, σ + us,X)

and

D2,u := A(α + ua, σ + us,X)

Lb∑
l=1

ϱlDb,l(b+ uϱ,X).

The definition of H ensures that for all sufficiently small u (i.e. u ∈ V), the denominators

1 + uh0(X̃) and 1 + uhk(ϵk) are bounded, as are h0(X̃), hk(ϵk) and uh′k(ϵk). Assumption

S1 ensures the same is true of D1,u, the trace term, A(α + ta, σ + ts,X) and its inverse.

These bounds, along with the finite moments given by Assumption S2 allow the application

of Jensen’s and Hölder’s inequalties to obtain that supu∈V E|Zu|2+δ/2 < ∞, implying the

claimed uniform integrability.

Lemma S7. Suppose that Assumptions S1 and S2 hold and let V = RL × H be equipped

with the normS6

∥(g, h)∥ :=

√√√√∥g∥2 +
K∑
k=0

∥h̃k∥2L2(Pθ)
.

S5If θ + tφ(g, h) ∈ Θ for all t ∈ [0, 1], U may be taken to include [0, 1].
S6Each h̃k is as defined in the statement of Lemma S1.
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Then, the functions (g, h) 7→ 1√
n

∑n
i=1

[
g′ℓ̇θ +

∑K
k=0 h̃k

]
(i.e. indexed by n) are equicon-

tinuous on compacts in L2(Pθ) and the functions (g, h) 7→ P n
θn(g,h)

(i.e. indexed by n) are

equicontinuous on compacts in the total variation metric.

Proof. For any (g, h), (g⋆, h⋆) ∈ V , by the fact the observations are i.i.d. and any h ∈ H is

mean zero, as is ℓ̇θ,∥∥∥∥∥ 1√
n

n∑
i=1

[
(g⋆ − g)′ℓ̇θ +

K∑
k=0

(h̃⋆k − h̃k)

]∥∥∥∥∥
2

L2(Pn
θ )

=

∥∥∥∥∥(g⋆ − g)′ℓ̇θ +
K∑
k=0

(h̃⋆k − h̃k)

∥∥∥∥∥
2

L2(Pθ)

.

Therefore, left hand side in the display above can be made arbitrarily small, uniformly in

n, by taking ∥(g⋆, h⋆) − (g, h)∥ sufficiently small and hence the first claim holds. For the

second claim we note that each (g, h) 7→ P n
θn(g,h)

is continuous by the pointwise continuity of

the densities and Scheffé’s Lemma. Then, let K ⊂ V = RL ×H be compact. We will now

show that for any convergent sequence (gn, hn) → (g, h) in K, dTV (P
n
θn(gn,hn)

, P n
θn(g,h)

) → 0 as

n→ ∞.S7 For this, by Lemma S17 and the triangle inequality, it is sufficient to show that

log
pnθn(gn,hn)

pθn(gn,h)
= oPn

θn(gn,h)
(1), log

pnθn(gn,h)
pθn(g,h)

= oPn
θn(g,h)

(1). (S12)

For these we first note that since hk is bounded,∥∥∥h̃k,n − h̃k

∥∥∥2
L2(Pn

θn(gn,h)
)
=

∫
[hn,k(x)− hk(x)]

2 ηk(x)(1 + hk(x)/
√
n) dx

≤ ∥hn,k − hk∥L2(Pn
θ ) + ∥hn,k − hk∥L2(Pn

θ )∥hk∥L∞(Pn
θ )/

√
n.

(S13)

Next introduce the notation:S8

uk,n,i :=

e′kA(θn(gn, h), X)Vθn(gn,h),i = e′kA(θn(gn, hn), X)Vθn(gn,hn),i if k = 1, . . . , K

X̃i if k = 0
.

Equation (S13) implies that (h̃k,n)n∈N is uniformly square P n
θn(gn,h)

integrable, and hence the

S7That this convergence holds for any convergent sequence in a compact subset K is equivalent to equicon-
tinuity on K, given the continuity of (g, h) 7→ Pn

θn(g,h)
already noted.

S8A(θ,X) := A(α, σ,X).
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Lindeberg condition holds for hk,n(uk,n,i)/
√
n. In particular, under P n

θn(gn,h)
,

lim
n→∞

n∑
i=1

E
[
hk,n(uk,n,i)

2

n
1
{
|hk,n(uk,n,i)| > δ

√
n
}]

= lim
n→∞

1

n

n∑
i=1

E
[
hk,n(uk,n,i)

21
{
|hk,n(uk,n,i)| > δ

√
n
}]

= lim
n→∞

E
[
hk,n(uk,n,i)

21
{
|hk,n(uk,n,i)| > δ

√
n
}]

= 0,

for any δ > 0. This implies uniform asymptotic negligability (e.g. Gut, 2005, Remark 7.2.4):

max
1≤i≤n

|hk,n(uk,n,i)|√
n

Pn
θn(gn,h)−−−−−→ 0. (S14)

Then, to prove the first claim in (S12) observe

log
pnθn(gn,hn)

pnθn(gn,h)
=

K∑
k=0

n∑
t=1

log(1 + hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n),

hence it suffices to show that each

ln,k :=
n∑

t=1

log(1 + hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n)

Pn
θn(gn,h)−−−−−→ 0.

Let ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤i≤n

|hk,n(uk,n,i)|/
√
n ≤ ε

}
;

Fn :=

{
max
1≤i≤n

|hk(uk,n,i)|/
√
n ≤ ε

}
.

Since hk is bounded, P n
θn(gn,h)

Fn → 1; P n
θn(gn,h)

En → 1 follows from equation S14. Hence

P n
θn(gn,h)

Fn ∩En → 1. On En ∩Fn we can perform a two-term Taylor expansion of log(1+x)

14



to obtain

log(1+hk,n(uk,n,i)/
√
n)− log(1 + hk(uk,n,i)/

√
n)

=
hk,n(uk,n,i)√

n
− 1

2

hk,n(uk,n,i)
2

n
− hk(uk,n,i)√

n
+

1

2

hk(uk,n,i)
2

n

+R

(
hk,n(uk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln,k =
1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)−
1

2

1

n

n∑
i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)

2]

+
n∑

i=1

R

(
hk,n(uk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
.

We will show that the remainder terms vanish. In particular, one has

n∑
i=1

∣∣∣∣R(hk,n(uk,n,i)√
n

)∣∣∣∣ ≤ n∑
i=1

∣∣∣∣hk,n(uk,n,i)√
n

∣∣∣∣ ∣∣∣∣hk,n(uk,n,i)2n

∣∣∣∣ ≤ max
1≤i≤n

|hk,n(uk,n,i)|√
n

1

n

n∑
i=1

hk,n(uk,n,i)
2.

By Markov’s inequality and equations (S13), (S14), this converges to zero in P n
θn(gn,h)

prob-

ability. The same evidently holds for the case where hk,n = hk for each n ∈ N. Thus,

ln,k =
1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)−
1

2

1

n

n∑
i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)

2] + oPn
θn(gn,h)

(1),

and it remains to show that 1√
n

∑n
i=1 hk,n(uk,n,i)−hk(uk,n,i) and

1
n

∑n
i=1[hk,n(uk,n,i)

2−hk(uk,n,i)2]
also converge to zero in probability under P n

θn(gn,h)
. The second of these follows directly from

(S13), Markov’s inequality and the reverse triangle inequality since

P n
θn(gn,h)

(∣∣∣∣∣ 1n
n∑

i=1

[hk,n(uk,n,i)
2 − hk(uk,n,i)

2]

∣∣∣∣∣ > ε

)
≤ ε−1 1

n

n∑
i=1

E
[
hk,n(uk,n,i)

2 − hk(uk,n,i)
2
]

= ε−1E
[
hk,n(uk,n,i)

2 − hk(uk,n,i)
2
]

→ 0.

For the remaining term, we start by noting that

E[hk,n(uk,n,i)− hk(uk,n,i)] =
E[(hk,n(ϵk)− hk(ϵk))hk(ϵk)]√

n

15



so ∣∣∣∣∣ 1√
n

n∑
i=1

E[hk,n(uk,n,i)]− E[hk(uk,n,i)]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∥hk,n − hk∥L2(Pn
θ )∥hk∥L2(Pn

θ ) → 0.

Thus it suffices to show that

1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)
Pn
θn(gn,h)−−−−−→ 0,

for hk,n(uk,n,i) := hk,n(uk,n,i)− E [hk,n(uk,n,i)] and hk(uk,n,i) := hk,n(uk,n,i)− E [hk(uk,n,i)]. By

the reverse triangle inequality and (S13),

E
[
(hk,n(uk,n,i)− hk(uk,n,i))

2]→ 0, uniformly in i.

Using this, the independence of the Wi and Markov’s inequality:

P n
θn(gn,h)

(∣∣∣∣∣ 1√
n

n∑
i=1

hk,n(uk,n,i)− hk(uk,n,i)

∣∣∣∣∣ > ε

)
≤ 1

ε2
1

n

n∑
i=1

E
[
(hk,n(uk,n,i)− hk(uk,n,i))

2]→ 0.

This establishes that
∑K

k=1 ln,k
Pn
θn(gn,h)−−−−−→ 0, as required.

For the second condition in (S12), by Lemma S2 part 3 P n
θn(g,h)

◁▷ P n
θ .

S9 Hence it suffices

to show that log
pn
θn(gn,h)

pθn(g,h)
= oPn

θ
(1). We first show that,

log
pnθn(gn,0)
pnθ

=
1√
n

n∑
t=1

g′ℓ̇θ(Wi)− E

(
1√
n

n∑
t=1

g′ℓ̇θ(Wi)

)2

+ oPn
θ
(1)

log
pnθn(g,0)
pnθ

=
1√
n

n∑
t=1

g′ℓ̇θ(Wi)− E

(
1√
n

n∑
t=1

g′ℓ̇θ(Wi)

)2

+ oPn
θ
(1)

where the expectations are taken under P n
θ . Here we may proceed analogously to Lemma

S1. In particular, by an argument analogous to that showing condition 1 in Lemma S6,

g 7→ √
pθn(g,0) is continuously differentiable, whilst an argument analogous to that showing

condition 2 in Lemma S6 yields that {qθ,(g,0)(W )2 : g ∈ U} is uniformly Pθ+φ(g,0) – integrable

for some neighbourhood U ⊂ RL of 0. Application of Lemma 7.6 and Theorem 7.2 in van der

Vaart (1998) then yields the two likelihood expansions in the display above. To complete

S9The present Lemma is used in the proof of Lemma S2, but is used only to handle the case where (gn, hn)
are not constant in n, which is the relevant case here.
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the proof set

ũk,n,i := e′kA(θn(gn, h), X)Vθn(gn,h),i, uk,n,i := e′kA(θn(g, h), X)Vθn(g,h),i,

and observe that

log
pnθn(gn,h)
pnθn(g,h)

−
[
log

pnθn(gn,0)
pnθ

− log
pnθn(g,0)
pnθ

]

=
K∑
k=1

n∑
i=1

log

(
1 +

hk(ũk,n,i)√
n

)
− log

(
1 +

hk(uk,n,i)√
n

)
,

where the bracketed term is oPn
θ
(1) by the preceding argument. Hence it suffices to show

that an arbitrary k-th element of the outer sum on the right hand side is also oPn
θ
(1). Let

ε ∈ (0, 1) be fixed and define

En :=

{
max
1≤i≤n

|hk(ũk,n,i)|/
√
n ≤ ε

}
, Fn :=

{
max
1≤i≤n

|hk(uk,n,i)|/
√
n ≤ ε

}
.

Since hk is bounded P n
θ (En ∩ Fn) → 1. On this set we may perform a two-term Taylor

expansion of log(1 + x) to obtain

log

(
1 +

hk(ũk,n,i)√
n

)
− log

(
1 +

hk(uk,n,i)√
n

)
=
hk(ũk,n,i)− hk(uk,n,i)√

n
− 1

2

hk(ũk,n,i)
2 − hk(uk,n,i)

2

n
+R

(
hk(ũk,n,i)√

n

)
−R

(
hk(uk,n,i)√

n

)
,

where |R(x)| ≤ |x|3. For the remainder terms one has for any ui,

n∑
i=1

∣∣∣∣R(hk(ui)√
n

)∣∣∣∣ ≤ max
1≤i≤n

hk(ui)√
n

1

n

n∑
i=1

hk(ui)
2 ≲

1√
n
,

since hk is bounded. For the first term in Taylor expansion, note that the derivative (in θ, σ)

of A(θ, σ,X) is bounded on a neighbourhood of (θ, σ) (by Assumption S1). Combine this

with the boundedness of h′k and the mean value theorem to conclude that

|hk(ũk,n,i)− hk(uk,n,i)| ≲ n−1/2∥gn − g∥

∥ϵi∥+
√√√√ Lb∑

l=1

Db,l(b+ ϱl,n, Xi)2

 ,
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for some ϱl,n with ∥ϱl,n∥ ≤ ∥gn − g∥. Since hk is bounded,

|hk(ũk,n,i)2 − hk(uk,n,i)
2| ≲ n−1/2∥gn − g∥

∥ϵi∥+
√√√√ Lb∑

l=1

Db,l(b+ ϱl,n, Xi)2

 .
Therefore, using the moment bounds in Assumption S2 parts 1 and 4

n∑
i=1

∣∣∣∣hk(ũk,n,i)− hk(uk,n,i)√
n

− 1

2

hk(ũk,n,i)
2 − hk(uk,n,i)

2

n

∣∣∣∣
≲ ∥gn − g∥

(
1 +

1√
n

)
1

n

n∑
i=1

∥ϵi∥+
√√√√ Lb∑

l=1

Db,l(b+ ϱl,n, Xi)2

 = oPn
θ
(1).

This completes the demonstration of (S12) and hence the proof.

Lemma S8. Suppose that Assumptions S1 and S2 hold. Then,

1. clH0 is the space of functions h0 : Rd−1 → R such that Eh0(X̃i)
2 <∞, Eh0(X̃) = 0;

2. For k = 1, . . . , K, clHk is the space of functions hk : R → R such that Ehk(ϵk)2 <∞,

E[hk(ϵk)] = E[ϵkhk(ϵk)] = E[κ(ϵk)hk(ϵi,k)] = 0.

Additionally, define H⋆
0 as the space of functions h̃0(W ) := h0(X̃) for h0 ∈ cl H̃0 and H⋆

k as

the space of functions h̃k(W ) := hk(e
′
kA(α, σ,X)Vθ) for hk ∈ cl H̃k (k = 1, . . . , K). Then

H⋆ := H⋆
0 + · · ·+H⋆

K ⊂ L2(Pθ) and H⋆ = cl(H̃0 + · · ·+ H̃K).

Proof. For 1 & 2 let H∗
k denote the set of functions described in the statement (for k =

0, . . . , K). Clearly any convergent sequence in this space has a limit also in this space and

hence H∗
k is closed. For any hk ∈ H̃∗

k there is a sequence (hk,n)n∈N such that each hk,n ∈ Hk

and hk,n → hk in squared mean (e.g. Newey, 1991, Lemma C.7) and hence clHk = H∗
k .

S10

For the second part, the first claim follows since e′kA(α, σ,X)Vθ has the same law as

ϵk under Pθ and hence each Pθ[h̃k(W )2] < ∞. For the second claim, as X̃, ϵ1, . . . , ϵK are

independent, H̃⋆
0 , . . . , H̃

⋆
K are pairwise orthogonal. As the (finite) sum of closed pairwise

orthogonal subspaces is closed (e.g. Conway, 1985, p. 39) we have that cl(H̃0 + . . .+ H̃K) ⊂
H⋆. For the reverse inclusion let h̃ =

∑K
k=0 h̃k ∈ H⋆. By the definition of H⋆ there are

S10The required non-singularity condition for q(ϵk) = (1, ϵk, κ(ϵk))
′ is satisfied under the condition E(ϵ4k)−

1 > E(ϵ3k)2 imposed in Assumption S2.
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h̃0,n(W ) := h0,n(X̃) such that h̃0,n ∈ H̃0 and Pθ

[
h̃0,n(W )− h̃0(W )

]2
→ 0 and h̃k,n(W ) :=

hk,n(e
′
kA(α, σ,X)Vθ) such that h̃k,n ∈ Hk and Pθ

[
h̃0,k(W )− h̃k(W )

]2
→ 0. Hence h̃n :=∑K

k=0 h̃k,n ∈ H̃0 + . . .+ H̃K and converges to h̃, implying that h̃ ∈ cl(H̃0 + · · ·+ H̃K).

Lemma S9. Suppose that Assumptions S1 and S2 hold. Then supn∈N Pθ̃n
∥ℓ̃θ̃n∥

2+δ/2 < ∞
and hence (∥ℓ̃θ̃n∥

2)n∈N is uniformly Pθ̃n
–integrable.

Proof. As each component of ℓ̃θ̃n lies in L2(Pθ̃n
) by its definition as an orthogonal projection,

it suffices to show that lim supn∈N Pθ̃n

[
∥ℓ̃θ̃n∥

2+δ/2
]
< ∞. Let dn := (bn, sn) :=

√
n(βn − β),

with bn ∈ RLb and sn ∈ RLσ , so that θ̃n = θn(gn, 0) with gn = (0, bn, sn). Then, under

Pθ̃n
, e′kA(α, σ + sn/

√
n,X)Vθ̃n has the same law as ϵk. This, along with the observations

that E[|ϕk(ϵk)|4+δ] < ∞, E|ϵk|4+δ (both for k = 1, . . . , K), E[∥Db,l(b,X)∥4+δ] < ∞ and the

local boundedness conditions in Assumption S1 part 4 allow the application of Jensen’s and

Hölder’s inequalities to conclude that lim supn∈N Pθ̃n

[
∥ℓ̃θ̃n∥

2+δ/2
]
<∞ as desired.

Lemma S10. Suppose that Assumptions S1 and S2 hold. Then,

lim
n→∞

∫ ∥∥∥ℓ̃θ̃n√pθ̃n − ℓ̃θ
√
pθ

∥∥∥2 dλ = 0.

Proof. Re-write the integral as

∫ ∥∥∥ℓ̃θ̃n√pθ̃n − ℓ̃θ
√
pθ

∥∥∥2 dλ =
L∑
l=1

∫ [
ℓ̃θ̃n,l

√
pθ̃n − ℓ̃θ,l

√
pθ

]2
dλ. (S15)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges to

zero. For this note that inspection of the forms of ℓ̃θ and pθ reveals that ℓ̃θ̃n → ℓ̃θ and pθ̃n → pθ

pointwise. Hence each ℓ̃θ̃n,l
√
pθ̃n → ℓ̃θ,l

√
pθ pointwise and, by Scheffé’s Lemma, Pθ̃n

TV−−→ Pθ.

Combine this observation with Lemma S9 and Corollary 2.9 in Feinberg, Kasyanov and

Zgurovsky (2016) to obtain limn→∞
∫
|ℓ̃θ̃n,l

√
pθ̃n|

2 dλ =
∫
|ℓ̃θ,l

√
pθ|2 <∞. Apply Proposition

2.29 in van der Vaart (1998) to conclude.

Lemma S11. Suppose that Assumptions S1, S2 and S3 hold. Then, for each (k, j) with

k ̸= j, each l, each x ∈ {α, σ} and each ϱ ∈ {τ, ς}, the following terms are oPn
θ̃n
(1):

1. ζ̄xl,k,k,n,γn − Pθ̃n

[
ζxl,k,k,γn,i

]
;

2. 1√
n

∑n
i=1

(
ϕk(Ak,γniVγn,i)− ϕ̂k,n,γn(Ak,γniVγn,i)

)
ζxl,k,j,iAj,γn,iVγn,i;

3. 1√
n

∑n
i=1

(
ϕk(Ak,γniVγn,i)− ϕ̂k,n,γn(Ak,γniVγn,i)

)
Ak,γn,iVγn,i

(
ζxl,k,j,γn,i − ζ̄xl,k,j,n,γn

)
;
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4. 1√
n

∑n
i=1 ([ϱ̂k,n,γn,1 − ϱk,1]Ak,γn,iVγn,i + [ϱ̂k,n,γn,2 − ϱk,2]κ(Ak,γn,iVγn,i));

5. 1
n

∑n
i=1 [Ak,γn,iDb,l(bn, Xi)]− Pθ̃n

[Ak,γn,iDb,l(bn, Xi)];

6. 1√
n

∑n
i=1

(
ϕk(Ak,γniVγn,i)− ϕ̂k,n,γn(Ak,γniVγn,i)

) (
[Ak,γn,iDb,l(bn, Xi)]− 1

n

∑n
i=1 [Ak,γn,iDb,l(bn, Xi)]

)
;

and the following terms are OPn
θ̃n
(1):

7. 1√
n

∑n
i=1(ϕk(Ak,γniVγn,i)Ak,γniVγn,i + 1);

8. 1√
n

∑n
i=1 ϱk,1Ak,γn,iVγn,i + ϱk,2κ(Ak,γn,iVγn,i);

9. 1√
n

∑n
i=1 ϕk (Ak,γniVγn,i).

Proof. Under Pθ̃n
, X̃ is distributed according to the density η0 whilst Ak,γn,iVγn,i has the

same law as ϵk. We will use these facts without explicit reference in the rest of the proof.

1. The triangular array (ζxl,k,k,γn,i)n∈N,i=1,...,n has i.i.d. rows and the variance of ζxl,k,k,γn,i
is bounded above uniformly in n by Assumption S1. The claim then follows from a

WLLN for triangular arrays (e.g. Durrett, 2019, Theorem 2.2.6).

2. Let Zn,i := ζxl,k,j,iAj,γn,iVγn,i. The triangular array (Zn,i)n∈N,i=1,...,n has i.i.d. rows,

Zn,i ⊥⊥ ϵi,k, Zn,i is mean zero and the variance of Zn,i is bounded above uniformly in n

by Assumptions S1 and S2. The claim then follows by Assumption S3.

3. By Cauchy – Schwarz one has

1√
n

n∑
i=1

(
ϕk(Ak,γniVγn,i)− ϕ̂k,n,γn(Ak,γniVγn,i)

)
Ak,γn,iVγn,i

(
ζxl,k,j,γn,i − ζ̄xl,k,j,n,γn

)
≤

[
1

n

n∑
i=1

(
ϕk(Ak,γniVγn,i)− ϕ̂k,n,γn(Ak,γniVγn,i)

)2 (
ζxl,k,j,γn,i − ζ̄xl,k,j,n,γn

)2]1/2

×

[
1

n

n∑
i=1

(Ak,γn,iVγn,i)
2

]1/2
.

Take Zn,i := ζxl,k,j,γn,i − ζ̄xl,k,j,n,γn . The triangular array (Zn,i)n∈N,i=1,...,n has i.i.d. rows,

Zn,i ⊥⊥ ϵi,k, Zn,i is mean zero and the variance of Zn,i is bounded above uniformly in

n by Assumption S1. Therefore, the first factor on the right hand side is oPn
θ̃n
(1) by

Assumption S3. The second right hand side factor is OPn
θ̃n
(1) by Assumption S2.

4. ϱk,n,γn
Pn
θ̃n−−→ ϱk by Lemma S12. Assumption S2 and the central limit theorem imply

that 1√
n

∑n
i=1Ak,γn,iVγn,i and

1√
n

∑n
i=1 κ(Ak,γn,iVγn,i) are OPθ̃n

(1).
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5. Let Un,i := vec(Ak,γn,iDb,l(bn, X)). Then for each component Un,i,l, (Un,i,l)n∈N,i=1,...,n is

a triangular array with i.i.d. rows and the variance of Un,i,l is bounded above uniformly

in n by Assumptions S1 and S2. The claim then follows from a WLLN for triangular

arrays (e.g. Durrett, 2019, Theorem 2.2.6).

6. Put Zn,i := [Ak,γn,iDb,l(bn, X)]− 1
n

∑n
i=1 [Ak,γn,iDb,l(bn, X)]. Then, the triangular array

(Zn,i)n∈N,i=1,...,n has i.i.d. rows, Zn,i ⊥⊥ ϵi,k, Zn,i is mean zero and the variance of Zn,i

is bounded above uniformly in n by Assumptions S1 and S2. The claim follows by

Assumption S3.

Each of the remaining items follow from the central limit theorem given Assumption S2.

Lemma S12. If Assumption S2 holds, ∥ϱk,n,γn − ϱk∥ = oPn
θ̃n
(νn,p) for ϱ ∈ {τ, ς}.S11

Proof. Under Pθ̃n
, M̂k,n,γn has the same law as Mk,n := 1

n

∑n
i=1

(
1 ϵ3i,k
ϵ3i,k ϵ4i,k − 1

)
. Therefore,

it suffices to show that ∥M−1
k,nw −M−1

k w∥ = oPn
θ̃n
(νn,p) for any fixed w ∈ R2. Since the map

M 7→M−1 is Lipschitz continuous at a positive definite matrix,

∥M−1
k,nw −M−1

k w∥2 ≤ ∥w∥∥M−1
k,n −M−1

k ∥2 ≲ ∥Mk,n −Mk∥2,

and thus it suffices to show that ∥Mk,n −Mk∥2 = oPn
θ̃n
(νn,p). If υ := δ/4 ≥ 1, we have that

by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
i=1

[ϵ3i,k − E(ϵ3i,k)] = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
1

n

n∑
i=1

[ϵ4i,k − E(ϵ4i,k)] = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
for any ρ > 0, which implies that

∥Mk,n −Mk∥2 ≤ ∥Mk,n −Mk∥F = oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
.

S11νn,p is as defined in Assumption 3: p := min{1+ δ/4, 2} and νn,p :=

{
n(1−p)/p for p ∈ (1, 2)

n−1/2 log(n)1/2+ρ for p = 2
,

for some ρ > 0.
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If 0 < υ < 1, by Theorems 2.5.11 & 2.5.12 in Durrett (2019), for any ρ > 0,

1

n

n∑
i=1

[(ϵi,k)
3 − E(ϵi,k)3] =

oPn
θ̃n

(
n−1/2 log(n)1/2+ρ

)
if υ ∈ [1/2, 1)

oPn
θ̃n

(
n

1−p
p

)
if υ ∈ (0, 1/2)

,

1

n

n∑
i=1

[(ϵi,k)
4 − E(ϵi,k)4] = oPn

θ̃n

(
n

1−p
p

)
.

which together imply that

∥Mk,n −Mk∥2 ≤ ∥Mk,n −Mk∥F = oPn
θ̃n

(
n

1−p
p

)
.

Lemma S13. Suppose that Assumptions S1, S2 and S3 hold. Then, for each (k, j) with

k ̸= j, each l, each x ∈ {α, σ} and each ϱ ∈ {τ, ς}, the following terms are oPn
θ̃n
(νn):

1. 1
n

∑n
i=1

(
ϕk(Ak,γn,iVγn,i)− ϕ̂k,n,γn(Ak,γn,iVγn,i)

)2 (
Aj,γn,iVγn,iζ

x
l,k,j,γn,i

)2
;

2.
(
Pθ̃n

[ζxl,k,k,γn,i]− ζ̄xl,k,k,n,γn
)2
;

3. 1
n

∑n
i=1 (ϕk(Ak,γn,iVγn,i)Ak,γn,iVγn,i + 1)2

(
Pθ̃n

[ζxl,k,k,γn,i]− ζ̄xl,k,k,n,γn
)2
;

4. 1
n

∑n
i=1 (ϱk,1Ak,γn,iVγn,i + ϱk,2κ(Ak,γn,iVγn,i))

2 (Pθ̃n
[ζxl,k,k,γn,i]− ζ̄xl,k,k,n,γn

)2
;

5. 1
n

∑n
i=1

(
ζ̄xl,k,k,n,γn ([ϱ̂k,n,γn,1 − ϱk,1]Ak,γn,iVγn,i + [ϱ̂k,n,γn,2 − ϱk,2]κ(Ak,γn,iVγn,i))

)2
;

6.
(
Pθ̃n

[Ak,γn,iDb,l(bn, Xi)]− [ADbX]n
)2
;

7. 1
n

∑n
i=1 (ϱk,1Ak,γn,iVγn,i + ϱk,2κ(Ak,γn,iVγn,i))

2 (Pθ̃n
[Ak,γn,iDb,l(bn, Xi)]− [ADbX]n

)2
;

8. 1
n

∑n
i=1 ([ADbX]n ([ϱ̂k,n,γn,1 − ϱk,1]Ak,γn,iVγn,i + [ϱ̂k,n,γn,2 − ϱk,2]κ(Ak,γn,iVγn,i)))

2

9. 1
n

∑n
i=1

(
ϕk(Ak,γn,iVγn,i)− ϕ̂k,n,γn(Ak,γn,iVγn,i)

)2
(Ak,γn,iDb,l(bn, Xi)− [ADbX]n)

2;

10. 1
n

∑n
i=1 (ϕk(Ak,γn,iVγn,i))

2 (Pθ̃n
[Ak,γn,iDb,l(bn, Xi)]− [ADbX]n

)2
,

where [ADbX]n := 1
n

∑n
i=1Ak,γn,iDb,l(bn, Xi).

Proof. Under Pθ̃n
, X̃ is distributed according to the density η0 whilst Ak,γn,iVγn,i has the

same law as ϵk. We will use these facts without explicit reference in the rest of the proof.

1. Let Zn,i := Aj,γn,iVγn,iζ
x
l,k,j,γn,i

. This is independent of ϵi,k, is mean-zero and has variance

bounded above uniformly in n by Assumptions S1 and S2. The claim then follows by

Assumption S3.
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2. Let Zn,i :=
(
ζxl,k,k,γn,i − Pθ̃n

[ζxl,k,k,γn,i]
)
and note that supn∈N EZ2+ε

n,i <∞ for a ε > 0 (by

Assumption S1). By the Lindeberg CLT one then has that
∑n

i=1 Zn,i = OPn
θ̃n
(
√
n) and

hence
(
Pθ̃n

[ζxl,k,k,γn,i]− ζ̄xl,k,k,n,γn
)2

= oPn
θ̃n
(νn).

3. By Assumption S2, 1
n

∑n
i=1 (ϕk(Ak,γn,iVγn,i)Ak,γn,iVγn,i + 1)2 = OPθ̃n

(1). Use 2.

4. By Assumption S2, 1
n

∑n
i=1 (ϱk,1Ak,γn,iVγn,i + ϱk,2κ(Ak,γn,iVγn,i))

2 = OPθ̃n
(1). Use 2.

5. By Assumption S1, ζ̄xl,k,k,n,γn is bounded uniformly for all sufficiently large n. By

Assumption S2, 1
n

∑n
i=1(Ak,γn,iVγn,i)

2 and 1
n

∑n
i=1 κ(Ak,γn,iVγn,i)

2 are OPn
θ̃n
(1). Combine

with Lemma S12.

6. Let Zn,i :=
(
Ak,γn,iDb,l(bn, Xi)− Pθ̃n

[Ak,γn,iDb,l(bn, Xi)]
)
and note that supn∈N EZ2+ε

n,i <

∞ for a ε > 0 (by Assumptions S1 and S2). By the Lindeberg CLT one then has that∑n
i=1 Zn,i = OPn

θ̃n
(
√
n) and hence

(
Pθ̃n

[Ak,γn,iDbn,l(bn, Xi)]− [ADbX]n
)2

= oPn
θ̃n
(νn).

7. By Assumption S2, 1
n

∑n
i=1 (ϱk,1Ak,γn,iVγn,i + ϱk,2κ(Ak,γn,iVγn,i))

2 = OPθ̃n
(1). Use 6.

8. Take [ADbXn] out of the summation. By Assumption S2 and 6. this is OPn
θ̃n
(1). By

Assumption S2, 1
n

∑n
i=1(Ak,γn,iVγn,i)

2 and 1
n

∑n
i=1 κ(Ak,γn,iVγn,i)

2 are OPn
θ̃n
(1). Combine

with Lemma S12.

9. For Zn,i := Ak,γn,iDb,l(bn, Xi)− [ADbX]n, Zn,i is independent of ϵi,k, mean-zero and has

variance bounded uniformly in n by Assumptions S1 and S2. The claim follows from

Assumption S3.

10. 1
n

∑n
i=1 (ϕk(Ak,γn,iVγn,i))

2 = OPn
θ̃n
(1) by Assumption S2. Use 6.

Lemma S14. Suppose that Assumptions S1 and S4 hold. Then, for each k, each l, each

x ∈ {α, σ},

1

n

n∑
i=1

(
ϕk(Ak,γn,iVγn,i)− ϕ̂k,n,γn(Ak,γn,iVγn,i)

)2 (
Ak,γn,iVγn,i

[
ζxl,k,k,γn,i − ζ̄xl,k,k,n,γn

])2
= oPn

θ̃n
(νn).

Proof. By Assumption S1,
[
ζxl,k,k,γn,i − ζ̄xl,k,k,n,γn

]2
is uniformly bounded for all large enough

n. Hence it suffices that by Assumption S4,

1

n

n∑
i=1

(
ϕk(Ak,γn,iVγn,i)− ϕ̂k,n,γn(Ak,γn,iVγn,i)

)2
(Ak,γn,iVγn,i)

2 = oPn
θ̃n
(νn).
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S3 Additional auxillary results

We present a few additional results that explicitly prove some claims made in the main

text. First, we show that if two errors ϵi,k and ϵi,j are Gaussian Ĩθ,αα becomes singular,

which implies the singularity of Ĩθ if Ĩθ,ββ is non-singular (cf. Propositions 8.2.4 and 8.2.8

in Bernstein (2009)). Second, we provide an explicit example of a density which satisfies

the first part of the Assumption 2 but not the second. Third we prove that if Assumption 2

part 1 holds then a sufficient condition for part 2 is that ηk has tails that decay to zero at a

polynomial rate.

Lemma S15. Consider the LSEM model (3) and suppose that Assumptions 1 and 2 hold.

Define the random vector Q in RK2
as

Q = (Q′
1, . . . , Q

′
K)

′,

where the j-th element of Qk for j ∈ [K] is given by

Qk,j =

ϕk(ϵk)ϵj if k ̸= j

τk,1ϵk + τk,2κ(ϵk) if k = j
.

Next define the matrix ζ ∈ RK2×Lα according to

ζ = (vec([Dα,1(α, σ)A(α, σ)
−1]′), . . . , vec([Dα,Lα(α, σ)A(α, σ)

−1]′)).

Then where ℓ̃θ is the effective score function as defined in lemma 3, the law of ℓ̃θ,1 under Pθ

is equal to that of ζ ′Q. Moreover,

(i) EQQ′ is non-singular if and only if for each pair (k, j) with k ̸= j and each k, j ∈ [K]

we have that [Eϕ2
k(ϵk)][Eϕ2

j(ϵj)] ̸= 1.

(ii) Ĩθ,αα is non-singular if rank(ζ) = Lα and EQQ′ is non-singular.

(iii) If rank(ζ) < Lα then Ĩθ,αα is singular.

(iv) If Lα = K2 and EQQ′ is singular then Ĩθ,αα is singular.

(v) If EQQ′ is singular, Ĩθ,αα may be singular when rank(ζ) = Lα < K2.

In particular, if both ϵk and ϵj (k ̸= j) have a Gaussian distribution and Lα = K2, Ĩθ,αα is

singular.
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Proof. For (i), let j, k,m, i all be in [K]. We will consider the entries of the matrix EQQ′,

which are of the form E[Qk,jQm,i]. In particular, the s, t-th element of the matrix is given

by the form E[Qk,jQm,i] where (k− 1)K + j = s and (m− 1)K + i = t. If k = j = m = i we

have s = t and E[Qk,jQm,i] = E[τk,1ϵk + τk,2κ(ϵk)]
2. The other diagonal entries occur when

k = m ̸= j = i, and have the form E[Qk,jQm,i] = E[ϕ2
k(ϵk)]. Inspection of the other possible

cases reveals that the only other case with non-zero entries is k = i ̸= m = j which has value

E[Qk,jQm,i] = E[ϕk(ϵk)ϵk]E[ϕk(ϵm)ϵm] = 1 by assumption 2.

Therefore for any k, j ∈ [K], column (k−1)K+j has non-zero entries in row (k−1)K+j

only if k = j and otherwise in rows (k − 1)K + j and (j − 1)K + k, with values Eϕ2
k(ϵk)

and 1 respectively. There are therefore no columns that can be linearly related to column

(k − 1)K + j if k = j. If k ̸= j, then column (k − 1)K + j has zeros everywhere except row

(k− 1)K + j where it has Eϕ2
k(ϵk) and row (j − 1) + k where it has 1. Column (j − 1)K + k

has zeros everywhere except row (j − 1)K + k where it has Eϕ2
j(ϵj) and row (k − 1)K + j

where it has 1. Since no other columns have entries in these rows, it follows that column

(k − 1)K + j is linearly independent of all the other columns if and only if it is linearly

independent of column (j − 1)K + k, which occurs if and only if [Eϕ2
k(ϵk)][Eϕ2

j(ϵj)] ̸= 1.

For (ii), suppose that rank(ζ) = Lα and EQQ′ is non-singular. Then there is a (unique)

positive definite [EQQ′]1/2 and we have Ĩθ,αα =
(
[EQQ′]1/2ζ

)′ (
[EQQ′]1/2ζ

)
which has full

rank, since
(
[EQQ′]1/2ζ

)
has full column rank.

For the remaining parts note first that

Ĩθ,αα = Eℓ̃θ,1ℓ̃′θ,1 = ζ ′ [EQQ′] ζ,

and so rank(Ĩθ,αα) ≤ min{rank(ζ ′EQQ′), rank(ζ)}. Hence if rank(ζ) < Lα, rank(Ĩθ,αα) < Lα

implying (iii).

For (iv), suppose that rank(EQQ′) < K2 = Lα. Then, there is a non-zero x ∈ RLα such

that EQQ′x = 0 and hence ζ ′EQQ′x = 0. Hence dim(ker(ζ ′EQQ′)) ≥ 1. It follows that

rank(ζ ′EQQ′) ≤ Lα − 1 < Lα and hence rank(Ĩθ,αα) ≤ min{rank(ζ ′EQQ′), rank(ζ)} < Lα.

For (v) suppose that K = 2, ϵ1 and ϵ2 are both Gaussian and A(α) =
[
cos(α) − sin(α)
sin(α) cos(α)

]
.

We have for l ∈ {1, 2}, ϕl(z) = −z, hence ϕ2
l (z) = z2 and so Eϕ2

l (ϵl) = 1. Dα,1(γ) =[
− sin(α) − cos(α)
cos(α) − sin(α)

]
and hence

Dα,1(α)A(α)
−1 = Dα,1(α)A(α)

′ =

[
0 −1

1 0

]
,

which implies ζ = (0,−1, 1, 0)′ and hence rank(ζ) = 1 = Lα < K2 = 4. Explicit calculation
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reveals that

EQQ′ =


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9

 ,
which is clearly singular with rank 3. We have

Ĩθ,αα = ζ ′ [EQQ′] ζ = ζ ′


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9




0

−1

1

0

 = ζ ′


0

0

0

0

 = 0.

For the last part, suppose that k ̸= j and ϵk and ϵj are both Gaussian. Since both have

zero mean and unit variance, we have for l ∈ {k, j}, ϕl(z) = −z, hence ϕ2
l (z) = z2 and so

Eϕ2
l (ϵl) = 1. EθQQ

′ is singular by (i) and hence by (iv) Ĩθ,αα is singular.

Example S1 (Necessity of part 2 of assumption 2). Suppose that ϵ̃k ∼ χ2
2 and let ϵk =

(ϵ̃k − 2)/2. Then ϵk has mean zero, variance one and density function ηk(z) = exp(−z − 1)

on its support [−1,∞) on which we also have that ϕk(z) = −1. Explicit calculation reveals

that part 1 of assumption 2 is satisfied. However, Eϕk(z) = −1 ̸= 0 as would be required by

part 2 of assumption 2.

Note also that this example does not satisfy the requirements of lemma S16: we have

ak = −1, bk = ∞ and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 ̸= 0,

and hence the required condition is violated for r = 0.

Lemma S16. Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} :

ηk(x) > 0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞ then ηk(x) = o(x−3) as

x → −∞, else ark limx↓ak ηk(x) = 0, and (ii) if bk = ∞ then ηk(x) = o(x−3) as x → ∞, else

brk limx↑bk ηk(x) = 0. Then, if part 1 of assumption 2 holds, part 2 is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈ R : ηk(x) > 0} and ak = inf{x ∈ R : ηk(x) > 0}.
We have, by integration by parts, with Gk denoting the measure on R corresponding to ηk,∫

ϕk(z)z
r dGk =

∫
η′k(z)

ηk(z)
ηk(z)z

r dz =

∫
η′k(z)z

r dz = ηk(z)z
r

∣∣∣∣bk
ak

−
∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)
∣∣bk
ak

= 0. Therefore we have Gkϕk(z)z
r = −Gk

d
dz
zr. For

26



r = 0 this equals zero as d
dz
z0 = d

dz
1 = 0. For r ∈ {1, 2, 3} we have dzr

dz
= rzr−1 and hence

Gkϕk(z)z
r = −rGkz

r−1. Since Gk1 = 1, Gkz = 0, and Gkz
2 = 1, the result follows.

Lemma S17. Suppose that Pn and Qn are probability measures (with each pair (Pn, Qn)

defined on a common measurable space) with corresponding densities pn and qn (with respect

to some σ-finite measure νn). Let ln = log qn/pn be the log-likelihood ratio.S12 If

ln = oPn(1),

then dTV (Pn, Qn) → 0.

Proof. By the continuous mapping theorem

qn
pn

= exp (ln)
Pn−→ 1.

Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) then implies that Qn ◁ Pn.

Let ϕn be arbitrary measurable functions valued in [0, 1]. Since the ϕn are uniformly tight,

Prohorov’s theorem ensures that for any arbitrary subsequence (nj)j∈N there exists a further

subsequence (nm)m∈N such that ϕnm ⇝ ϕ ∈ [0, 1] under Pnm . Therefore by Slutsky’s Theorem

(ϕnm , exp(lnm))⇝ (ϕ, 1) under Pnm .

By Le Cam’s third Lemma (e.g. van der Vaart, 1998, Theorem 6.6), under Qmn the law of

ϕnm converges weakly to the law of ϕ. Since each ϕn ∈ [0, 1]

lim
m→∞

[Qnmϕnm − Pnmϕnm ] = 0.

As (nj)j∈N was arbitrary, the preceding display holds also along the original sequence.

S4 A consistent estimator of the Moore – Penrose psue-

doinverse

As is well known, the Moore – Penrose psuedoinverse of a matrix is not a continuous function

on the space of positive semi-definite matrices (see e.g. Ben-Israel and Greville, 2003, Section

6.6). In consequence, if one has a consistent estimator M̌n of some matrix M , it need not

follow that M̌ † is consistent forM †. A necessary and sufficient condition for this convergence

S12ln may be defined arbitrarily when pn = 0.
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in probability to occur is that rank(M̌n) = rank(M) with probability approaching one as

n→ ∞ (Andrews, 1987, Theorem 2).

Here we provide a simple construction, based on the knowledge of the speed of conver-

gence of M̌n to M , which results in an estimator M̂n which is consistent for M and satisfies

rank M̂n = rankM with probability approaching one as n → ∞ and, in consequence, M̂ †
n is

consistent for M †.

The construction proposed here is very similar to a special case of that considered by

Dufour and Valéry (2016). We provide a direct proof for this construction rather than relying

on Proposition 9.1 in Dufour and Valéry (2016) as the latter would require the introduction

of an additional rate term (bn in their notation) which satisfies a given condition (their

Assumption 2.2). For our purposes we need only a single rate term (essentially the equivalent

of cn in their notation) and thus there are fewer conditions to verify.

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)

matrices (M̌n)n∈N (of fixed dimension L× L) satisfy

Pn

(
∥M̌n −Mn∥2 < νn

)
→ 1, (S16)

for a sequence (Pn)n∈N of probability measures, a known non-negative sequence νn → 0 and

a sequence of deterministic matrices Mn →M with rank(Mn) = rank(M) for all sufficiently

large n.S13 Let M̌n = ǓnΛ̌nǓ
′
n be the corresponding eigendecompositions and define

M̂n := ǓnΛn(νn)Ǔ
′
n , (S17)

where Λn(νn) is a diagonal matrix with the νn-truncated eigenvalues of M̌n on the main

diagonal and Ǔn is the matrix of corresponding orthonormal eigenvectors. That is, if

(λ̌n,i)
L
i=1 denote the non-increasing eigenvalues of M̌n, then the (i, i)-th element of Λn(νn) is

λ̌n,i1(λ̌n,i ≥ νn).

Proposition S1. If (S16) holds, Mn → M and for all n greater than some N ∈ N
rank(Mn) = rank(M), then M̂n

Pn−→M and

Pn

(
rank(M̂n) = rank(M)

)
→ 1,

S13(S16) is implied by ∥M̌n − Mn∥ = oPn
(νn) for any matrix norm. Moreover, the existence of such a

sequence (νn)n∈N is guaranteed if ∥M̌n − Mn∥2 → 0 in Pn-probability, however its explicit knowledge is
necessary to perform the subsequent construction. In most cases Mn = M for all n ∈ N.

28



where M̂n is defined as in (S17). In consequence,

M̂ †
n

Pn−→M †.

Proof. Throughout let r̂n := rank(M̂n), r := rank(M), Rn := {r̂n = r} and λl, λn,l, λ̌n,l and

λ̂n,l respectively the l-th largest eigenvalue of M , Mn, M̌n and M̂n.

Start with the case r = 0. By Weyl’s perturbation theorem (e.g. Bhatia, 1997, Corollary

III.2.6) and the fact that Mn = 0 for all n larger than some N ∈ N,

Pn(Rn) = Pn

(
max

l=1,...,L
|λ̌n,l| < νn

)
≥ Pn(∥M̌n −Mn∥2 < νn) → 1.

On the sets Rn we have that M̂n = 0 =M and so M̂n
Pn−→M as P (Rn) → 1.

Now suppose that r > 0. let ν := λr/2 > 0 and note that (S16) implies that ∥M̌n −
Mn∥2 = oPn(1) and so, by Weyl’s perturbation theorem, maxl=1,...,L |λ̌n,l − λn,l| ≤ ∥M̌n −
Mn∥2 = oPn(1). Hence, defining En := {λ̌n,r ≥ νn}, for n large enough such that νn < ν

and ∥Mn −M∥2 < ν/2 we have

Pn(En) = Pn

(
λ̌n,r ≥ νn

)
≥ Pn

(
λ̌n,r ≥ ν

)
≥ Pn

(
|λ̌n,r − λn,r| < ν/2

)
→ 1.

If r = L we have that Rn ⊃ En and therefore Pn(Rn) → 1. Additionally, if λ̌n,L ≥ νn

then λ̂n,l = λ̌n,l for each l = 1, . . . , L and hence M̂n = M̌n, implying ∥M̂n −M∥2 ≤ ∥M̌n −
Mn∥2 + ∥Mn −M∥2 = oPn(1).

Now suppose instead that r < L and define Fn := {λ̌n,r+1 < νn}. It follows by Weyl’s

perturbation theorem and the fact that λn,l = 0 for l > r and n ≥ N that as n→ ∞

Pn(Fn) = Pn(λ̌n,r+1 < νn) ≥ Pn(∥M̌n −Mn∥2 < νn) → 1.

Since Rn ⊃ En ∩ Fn, this implies that Pn(Rn) → 1 as n → ∞. Additionally, if λ̌n,r ≥ νn,

λ̌n,r+1 < νn and ∥M̌n −M∥2 ≤ υ, we have that λ̂n,k = λ̌n,k for k ≤ r and λ̂n,l = 0 = λl for

l > r and so

∥Λn(νn)− Λ∥2 = max
l=1,...,r

|λ̂n,l − λl| = max
l=1,...,r

|λ̌n,l − λl| ≤ ∥Λ̌n − Λ∥2 ≤ ∥M̌n −M∥2 ≤ υ,

and hence {∥M̌n −M∥2 ≤ υ} ∩En ∩ Fn ⊂ {∥Λn(νn)− Λ∥2 ≤ υ}, from which it follows that

Λn(νn)
Pn−→ Λ as ∥M̌n −M∥2 ≤ ∥M̌n −Mn∥2 + ∥Mn −M∥2

Pn−→ 0. Suppose that (λ1, . . . , λr)

consists of s distinct eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms
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(each at least one).S14 λs+1 = 0 is an eigenvalue with multiplicity ms+1 = L − r. Let lki

for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the column indices of the eigenvectors in U

corresponding to each λk. For each λk, the total eigenprojection is Πk :=
∑mk

i=1 ulki u
′
lki
.S15

Total eigenprojections are continuous.S16 Therefore, if we construct Πn,k in in an analogous

fashion to Πk but replace columns of U with columns of Ǔn, we have Πn,k
Pn−→ Πk for each

k = 1, . . . , s + 1 since M̌n
Pn−→ M . Spectrally decompose M as M =

∑s
k=1 λ

kΠk, where the

sum runs to s rather than s+ 1 since λs+1 = 0. Then,

M̂n =
s+1∑
k=1

mk∑
i=1

λ̂n,lki un,lki u
′
n,lki

=
s+1∑
k=1

mk∑
i=1

(λ̂n,lki − λk)un,lki u
′
n,lki

+
s∑

k=1

λkΠn,k,

whence

∥M̂n −M∥2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂n,lki − λk|∥un,lki u
′
n,lki

∥2 +
s∑

k=1

|λk|∥Πn,k − Πk∥2
Pn−→ 0,

by Π̂n,k
Pn−→ Πk, Λ̂n(νn)

Pn−→ Λ and since we have ∥un,lki u
′
n,lki

∥2 = 1 for any i, k, n. Combine

this with Pn(Rn) → 1 and Lemma 1 in Andrews (1987) to conclude.

S5 Log density score estimation

In this section we discuss the details for the estimation of the log density scores ϕk. We

first provide a detailed description of the construction of the estimator (11). Secondly we

provide a proofs of Lemma 4, i.e. we show that this estimate satisfies Assumption 4. Thirdly

we provide proofs of Lemmas S4 and S5. The analysis here (in addition to the proposed

estimator) is based on Chen and Bickel (2006) and Jin (1992), with small tweaks to fit the

setup of the present paper.

S5.1 B-spline based log density score estimation

For ξ1 < · · · < ξN a knot sequence, the first order B-splines are defined according to b
(1)
i (x) :=

1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the recurrence relation

b
(l)
i (x) =

x− ξi
ξi+l−1 − ξi

b
(l−1)
i (x) +

ξi+l − x

ξi+l − ξi+1

b
(l−1)
i+1 (x), (S18)

S14The superscripts on the λs are indices, not exponents.
S15See e.g Chapter 8.8 of Magnus and Neudecker (2019).
S16E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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for l > 1 and i = 1, . . . , N − l. A l-th order B-spline is l − 2 times differentiable in x with

first derivative

c
(l)
i (x) =

l − 1

ξi+l−1 − ξi
b
(l−1)
i (x)− l − 1

ξi+l − ξi+1

b
(l−1)
i+1 (x). (S19)

See de Boor (2001) for more details on B-splines.

Let bk,n = (bk,n,1, . . . , bk,n,Bk,n
)′ be a collection of Bk,n cubic (i.e. 4-th order) B-splines

and let ck,n = (ck,n,1, . . . , ck,n,Bk,n
)′ be their derivatives: ck,n,i(x) :=

dbk,n,i(x)

dx
for each i ∈

{1, . . . ,Bk,n}. The knots of the splines, ξk,n = (ξk,n,i)
Kk,n

i=1 are equally spaced in [ΞL
k,n,Ξ

U
k,n]

with δk,n := ξk,n,i+1− ξk,n,i > 0.S17 For each (k, n) pair the relationships between the number

of knots (Kk,n), the number of spline functions (Bk,n) and δk,n are given by Bk,n = Kk,n − 4

and Kk,n = 1 + (ΞU
k,n − ΞL

k,n)/δk,n.
S18

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(ϕk(z)− ψ′

k,nbk,n(z))
2ηk(z) dz

=

∫
ϕk(z)

2ηk(z) dz +

∫
(ψ′

k,nbk,n)
2ηk(z) dz + 2

∫
ψ′
k,nck,n(z)ηk(z) dz

= Eϕk(ϵk)
2 + ψ′

k,nE[bk,n(ϵk)bk,n(ϵk)′]ψk,n + 2ψ′
k,nEck,n(ϵk),

(S20)

where we integrate over the support of ϕk,n (which is also the support of bk,n and ck,n). This

mean-squared error is minimsed by:S19

ψk,n := −E[bk,n(ϵk)bk,n(ϵk)′]−1E[ck,n(ϵk)]. (S21)

Replace the population expectations with sample counterparts to define the estimate of ψk,n

ψ̂k,n,γ := −

[
1

n

n∑
i=1

bk,n(An,k,iVθn,i)bk,n(An,k,iVθn,i)
′

]−1
1

n

n∑
i=1

ck,n(An,k,iVθn,i), (S22)

where An,k,i and Vθn,i are defined as in Assumption 4. The estimate for ϕk is

ϕ̂k,n,γ(z) := ψ̂′
k,n,γbk,n(z) . (S23)

We note that computing (S23) effective only requires computing the B-spline regression

coefficients ψ̂k,n,γ in (S22). To implement the score test we need to estimate K density

scores, hence the computational cost is quite modest.

S17For each k = 1, . . . ,K the sequences (ΞL
k,n)n∈N, (Ξ

U
k,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.

S18Implicitly we choose Kk,n and the endpoints and δk,n adjusts such that these formulae hold; this way
we do not need to adjust anything to ensure these are integers.
S19This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −ϕk.
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S5.2 Proof of Lemmas 4, S4 & S5

Proof of Lemma 4. Under Pθn , Ak,γn,iVθn,i ≃ ϵk ∼ ηk. We start by showing that ϕ̂k,n :=

ϕ̂k,n,γn (where γn = (α0, βn)) satisfies equation (35). We have∣∣∣∣∣ 1n
n∑

i=1

ϕ̂k,n(ϵi,k)Zn,i − ϕk(ϵi,k)Zn,i

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]
Zn,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

[
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

]
Zn,i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]Zn,i

∣∣∣∣∣ ,
(S24)

where ϕk,n := ϕk1[ΞL
k,n,Ξ

U
k,n]

as in Assumption 3, ϕ̃k,n(z) := ψ′
k,nbk,n(z) and ϕ̂k,n(z) := ψ̂′

k,n,γn
bk,n(z).

To establish (35) it suffices to show that each of these three terms on the right hand side are

oP(n
−1/2).S20

For the last term in (S24), by assumption E1{ϵi,k /∈ [ΞL
k,n,Ξ

U
k,n]} ↓ 0 and hence by

independence, Cauchy-Schwarz and supn∈N EZ2
n,i <∞,

E
(
[ϕk,n(ϵi,k)− ϕk(ϵi,k)]

2Z2
n,i

)
= E

[
ϕk(ϵi,k)

21{ϵi,k /∈ [ΞL
k,n,Ξ

U
k,n]}

]
EZ2

n,i

≤
[
Eϕk(ϵi,k)

4
]1/2 [E1{ϵi,k /∈ [ΞL

k,n,Ξ
U
k,n]}

]1/2 EZ2
n,i

→ 0.

(S25)

By Markov’s inequality it follows that for any υ > 0,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]Zn,i

∣∣∣∣∣ > υ

)
≤
nE
(
[ϕk,n(ϵi,k)− ϕk(ϵi,k)]

2Z2
n,i

)
nυ

→ 0.

For the second term, we note that by our hypotheses and lemma S18 we have

E
(
[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]

2Z2
n,i

)
= E

(
[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]

2
)
EZ2

n,i

≤ C2δ6k,n∥ϕ
(3)
k,n∥2∞EZ2

n,i → 0
, (S26)

as n→ ∞, and hence again by Markov’s inequality for any υ > 0,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]Zn,i

∣∣∣∣∣ > υ

)
≤
nE
(
[ϕ̃k(ϵi,k)− ϕk,n(ϵi,k)]

2Z2
n,i

)
nυ

→ 0.

S20Here we implicitly assume (without loss of generality) that all the ϵi and Zn,i are defined on a common
probability space (Ω,F ,P).
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For the first term, by Cauchy-Schwarz∣∣∣∣∣ 1n
n∑

i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]
Zn,i

∣∣∣∣∣ ≤ ∥ψ̂k,n − ψk,n∥2

∥∥∥∥∥ 1n
n∑

i=1

bk,n(ϵi,k)Zn,i

∥∥∥∥∥
2

= oP(n
−1/2),

by lemmas S19 and S20.

Next, we show that ϕ̂k,n satisfies equation (36). We have:

1

n

n∑
i=1

([
ϕ̂k,n(ϵi,k)− ϕk(ϵi,k)

]
Zn,i

)2
≤ 4

n

n∑
i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]2
Z2

n,i

+
4

n

n∑
i=1

[
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

]2
Z2

n,i

+
4

n

n∑
i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]
2 Z2

n,i.

(S27)

We will show that (1/4 of) each of the right hand side terms is oP(νn) under our assumptions,

which is sufficient for equation (36). For the last term, for any υ > 0, by Markov’s inequality,

independence and Cauchy-Schwarz we have

P

(∣∣∣∣∣ 1n
n∑

i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]
2 Z2

n,i

∣∣∣∣∣ > υνn

)
≲

[
E1{ϵi,k /∈ [ΞL

k,n,Ξ
U
k,n]}

]1/2 EZ2
n,i

υνn
= o(1).

For the second term, for any υ > 0, by Markov’s inequality, independence and lemma S18:

P

(∣∣∣∣∣ 1n
n∑

i=1

[
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

]2
Z2

n,i

∣∣∣∣∣ > υνn

)
≤

E
(
[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]

2
)
EZ2

n,i

υνn

≤
Cδ6k,n∥ϕ

(3)
k,n∥2∞EZ2

n,i

υνn

= o(1).

Finally, for the first term in the decomposition, by lemma S20 and Assumption 3-part (ii):

1

n

n∑
i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]2
Z2

n,i ≤ ∥ψ̂k,n − ψk,n∥22

[
1

n

n∑
i=1

∥bk,n(ϵi,k)∥22Z2
n,i

]
= oP(νn).

Proof of Lemma S4. The proof proceeds verbatim as that of Lemma 4 once references to

equations (35), (36) are replaced by equations (S6), (S7) since under the conditions of the

present Lemma, one still has An,γn,iVθn,i ≃ ϵk ∼ ηk under Pθn .
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Proof of Lemma S5. We use a similar decomposition to as in the Proof of Lemma 4:

1

n

n∑
i=1

([
ϕ̂k,n(ϵi,k)− ϕk(ϵi,k)

]
ϵk,i

)2
≤ 4

n

n∑
i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]2
ϵ2k,i

+
4

n

n∑
i=1

[
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

]2
ϵ2k,i

+
4

n

n∑
i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]
2 ϵ2k,i.

(S28)

We will show that (1/4 of) each of the right hand side terms is oP(νn) under our assumptions,

which is sufficient for equation (S8), since under Pθn , Ak,γn,iVθn,i ≃ ϵk ∼ ηk. For the last

term, for any υ > 0, by Markov’s inequality, Cauchy – Schwarz and the first additional

condition in Lemma S5 we have

P

(∣∣∣∣∣ 1n
n∑

i=1

[ϕk,n(ϵi,k)− ϕk(ϵi,k)]
2 ϵ2k,i

∣∣∣∣∣ > υνn

)
≲

(
E
[
ϵ4k,i1{ϵi,k /∈ [ΞL

k,n,Ξ
U
k,n]}

])1/2
υνn

= o(1).

For the second term, first note that by Lemma S20

ϕ̃k,n(ϵi,k)
2 ≤ ∥ψk,n∥22∥bk,n(ϵi,k)∥22 ≤ ∥ψk,n∥22 ≤ ∥Γ−1

k,n∥
2
2∥Ck,n∥22 = O(δ−3

k,n∆k,n).

Thus, for any υ > 0, by Markov’s inequality, Cauchy – Schwarz, the additional conditions

in Lemma S5 and Lemma S18:

P

(∣∣∣∣∣ 1n
n∑

i=1

[
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

]2
ϵ2k,i

∣∣∣∣∣ > υνn

)

≤
E
(
[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]

2ϵ2k,i

)
υνn

≤
M2

k,nE
(
[ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)]

2
)

υνn
+

E
[
(ϕ̃k,n(ϵi,k)

2 + ϕk(ϵi,k)
2)ϵ2i,k1{|ϵi,k| > Mk,n}

]
υνn

≲
M2

k,nCδ
6
k,n∥ϕ

(3)
k,n∥2∞

υνn
+
δ−3
k,n∆k,nE

[
ϵ2i,k1{|ϵi,k| > Mk,n}

]
υνn

+

[
E
(
ϵ4i,k1{|ϵi,k| > Mk,n}

)]1/2
υνn

= o(1).

Finally, for the first term in the decomposition, by lemma S20, ∥bk,n(ϵi,k)∥22 ≤ 1 (e.g. de Boor,
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2001, equation (36), p. 96), Assumption S2, the WLLN and Assumption 3-part (ii)

1

n

n∑
i=1

[
ϕ̂k,n(ϵi,k)− ϕ̃k,n(ϵi,k)

]2
ϵ2k,i ≤ ∥ψ̂k,n,γn − ψk,n∥22

[
1

n

n∑
i=1

ϵ2k,i

]
= oP(νn).

S5.3 Technical lemmas

Lemma S18 (Cf. Lemma A.5, Chen and Bickel, 2006). Let ϕk,n be defined as in Assumption

3 and ϕ̃k,n := ψ′
k,nbk,n. If part (iv) of Assumption 3 holds,

E
(
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

)2
≤ C2δ6k,n∥ϕ

(3)
k,n∥

2
∞.

Proof. By the definition of ϕ̃k,n and lemma S22 we have

E
(
ϕ̃k,n(ϵi,k)− ϕk,n(ϵi,k)

)2
= inf

g∈G4(ξk,n)
E (g(ϵi,k)− ϕk,n(ϵi,k))

2 ≤ C2δ6k,n∥ϕ
(3)
k,n∥

2
∞,

where the equality follows since ψk,n is the minimiser of (S20) where we integrate over the

support of ϕk,n (which is also the support of bk,n and ck,n).

Lemma S19 (Cf. Lemma A.3, Chen and Bickel, 2006). Suppose assumptions 2 (or S2) and

3 hold. If Zn,i is independent of ϵi,k and supn∈N,i≤1,...,n EZ2
n,i <∞, then∥∥∥∥∥ 1n

n∑
i=1

bk,n(ϵi,k)Zn,i

∥∥∥∥∥
2

= OP(n
−1/2).

Proof. By
∑Bk,n

m=1 bk,n,m(x)
2 ≤ 1 (e.g. de Boor, 2001, equation (36), p. 96) and our hypotheses

E

∥∥∥∥∥ 1n
n∑

i=1

bk,n(ϵi,k)Zn,i

∥∥∥∥∥
2

2

 =
1

n
E

Bk,n∑
m=1

bn,k,m(ϵi,k)
2

EZ2
n,i ≤

EZ2
n,i

n
.

Fix ϵ > 0 and take M > 0 large enough such that supn∈N,i≤1,...,n EZ2
n,i/M

2 < ϵ. Markov’s

inequality yields

P

(
√
n

∥∥∥∥∥ 1n
n∑

i=1

bk,n(ϵi,k)Zn,i

∥∥∥∥∥
2

> M

)
≤

E
(
n
∥∥ 1
n

∑n
i=1 bk,n(ϵi,k)Zn,i

∥∥2
2

)
M2

≤
EZ2

n,i

M2
< ϵ.
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Lemma S20 (Cf. Lemma A.2, Chen and Bickel, 2006). Suppose that Assumptions 2 (or

S2) and 3 hold. Then, for

Γ̂k,n :=
1

n

n∑
i=1

bk,n(ϵi,k)bk,n(ϵi,k)
′, Γk,n := E[bk,n(ϵk)bk,n(ϵk)′],

and

Ĉk,n :=
1

n

n∑
i=1

ck,n(ϵi,k), Ck,n := E[ck,n(ϵk)],

we have that

(i) ∥Ck,n∥2 = O(δk,nB
1/2
k,n),

(ii) ∥Ĉk,n − Ck,n∥2 = OP

(√
Bk,n logBk,n

nδ2k,n

)
,

(iii) ∥Γ̂k,n − Γk,n∥2 = OP

(√
Bk,n logBk,n

n

)
,

(iv) ∥Γk,n∥2 = O(δk,n)

(v) ∥Γ−1
k,n∥2 = O(δ−2

k,n).

In particular, ∥Γ̂−1
k,nĈk,n−ψk,n∥2 = OP(n

−1/2∆k,nδ
−4
k,n(∆k,nδ

−1
k,n)

ι) = oP(1) and ∥Γ̂k,n∥2 = oP(1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel

(2006). Firstly, from the representation of the derivative of the cubic spline (e.g. de Boor,

2001) ck,n,i =
(
b
(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. We have, for large enough n ∈ N,

|Ck,n,i| = |E[ck,n,i(ϵk)]| = δ−1
k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b
(3)
k,n,i+1(t)ηk(t) dt

∣∣∣∣
= δ−1

k,n

∣∣∣∣∫ b
(3)
k,n,i(t)ηk(t) dt−

∫
b
(3)
k,n,i(t)ηk(t+ δk,n) dt

∣∣∣∣
≤
∣∣∣∣∫ b

(3)
k,n,i(t)

ηk(t+ δk,n)− ηk(t)

δk,n
dt

∣∣∣∣
≤ 2∥η′k∥∞

∫
b
(3)
k,n,i(t) dt

≤ 6∥η′k∥∞δk,n,

where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines
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(of any order) take values in [0, 1].S21 It follows immediately that for large enough n ∈ N,

Bk,n∑
i=1

C2
k,n,i ≤

Bk,n∑
i=1

62∥η′k∥2∞δ2k,n = Bk,n6
2∥η′k∥2∞δ2k,n,

from which (i) follows.

As noted above ck,n,i =
(
b
(3)
k,n,i − b

(3)
k,n,i+1

)
/δk,n. Since splines (of any order) take values in

[0, 1], it follows that ck,n,i ∈ [−δ−1
k,n, δ

−1
k,n]. Hence, by Hoeffdings’s inequality for t ≥ 0 we have

P

(∣∣∣∣∣ 1n
n∑

i=1

ck,n,m(ϵi,k)− Ecn,k,m(ϵi,k)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2nδ−2
k,n

)
= 2 exp(−nt2δ2k,n/2).

Therefore,

P
(
∥Ĉk,n − Ck,n∥2 ≥ t

)
≤

Bk,n∑
m=1

P

(∣∣∣∣∣ 1n
n∑

i=1

ck,n,m(ϵi,k)− Ecn,k,m(ϵi,k)

∣∣∣∣∣ ≥ t√
Bk,n

)
≤ 2Bk,n exp(−nt2B−1

k,nδ
2
k,n/2),

and so for any fixed ϵ > 0 we can take t =
√

4Bk,n logBk,n

nδ2k,n
to obtain (ii) as then

P
(
∥Ĉk,n − Ck,n∥2 ≥ t

)
≤ 2B−1

k,n → 0.

Since for any m, s ∈ {1, . . . ,Bk,n} we have bk,n,mbk,n,s ∈ [0, 1] it follows by Hoeffding’s

inequality that for any t ≥ 0

P

(∣∣∣∣∣ 1n
n∑

i=1

bk,n,m(ϵi,k)bk,n,s(ϵi,k)− E[bk,n,m(ϵi,k)bk,n,s(ϵi,k)]

∣∣∣∣∣ ≥ t

)
≤ 2 exp(−2nt2).

Therefore, since ∥Γ̂k,n−Γk,n∥2 ≤ ∥Γ̂k,n−Γk,n∥F and both Γ̂k,n and Γk,n are zero for all (m, s)

S21This is evident from their definition. See also property (36) (p. 96) of de Boor (2001).
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entries where |m− s| > 3 (de Boor, 2001, (20), p. 91) we have that

P
(
∥Γ̂k,n − Γk,n∥2 ≥ t

)
≤ P

(
∥Γ̂k,n − Γk,n∥F ≥ t

)
≤

Bk,n∑
m=1

min(Bk,n,m+3)∑
s=max(m−3,1)

P

(∣∣∣∣∣ 1n
n∑

i=1

bk,n,m(ϵi,k)bk,n,s(ϵi,k)− E[bk,n,m(ϵi,k)bk,n,s(ϵi,k)]

∣∣∣∣∣ ≥ t√
7Bk,n

)

≤ 14Bk,n exp

(
−2nt2

7Bk,n

)
.

Putting t =
√

7Bk,n logBk,n

n
we obtain (iii) as

P
(
∥Γ̂k,n − Γk,n∥2 ≥ t

)
≤ 14B−1

k,n → 0.

Since Γk,n is symmetric and positive (semi-)definite we have that:S22

∥Γk,n∥2 ≤ ∥Γk,n∥∞ = max
m=1,...,Bk,n

Bk,n∑
s=1

Ebn,k,m(ϵk)bk,n,s(ϵk).

Then, since for any z ∈ R, each row of bk,n(z)bk,n(z)
′ has at most 7 non-zero entries,S23 all

of which are bounded above by 1 we have

∥Γk,n∥2 ≤ max
m=1,...,Bk,n

Bk,n∑
s=1

Ebn,k,m(ϵk)bk,n,s(ϵk)

= max
m=1,...,Bk,n

Bk,n∑
s=1

∫ ξk,n,m+4

ξk,n,m

bk,n,m(z)bk,n,s(z)ηk(z) dz

≤ max
m=1,...,Bk,n

7∥ηk∥∞4δk,n

= 28∥ηk∥∞δk,n,

which yields (iv) in conjunction with requirement (iii) of Assumption 3.

By Assumption 3 part (v), on [ΞL
k,n,Ξ

U
k,n] we have η(x) ≥ cδk,n. Hence η(x) − cδk,n ≥ 0

and so
∫
bk,nb

′
k,n(η − cδk,n)λ =

∫
(bk,n

√
η − cδk,n)(bk,n

√
η − cδk,n)

′λ. Note that the functions

bk,i
√
η − cδk,n satisfy

∫
(bk,i

√
η − cδk,n)

2 dλ <∞ and hence belong to L2(λ). It follows that

S22See e.g. Theorem 5.6.9 in Horn and Johnson (2013).
S23bk,n,m(z) = 0 outside [ξk,n,m, ξk,n,m+4). See (20) on p. 91 in de Boor (2001).
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the matrix
∫
bk,nb

′
k,n(η − cδk) dλ is a Gram matrix and hence positive semi-definite. This

implies that Γk,n ⪰ cδk,nΓ̃k,n where Γ̃k,n is defined as in lemma S21. Hence, by the Rayleigh

quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma S21

λmin(Γk,n) ≥ λmin(cδk,nΓ̃k,n) = cδk,nλmin(Γ̃k,n) ≥ cυδ2k,n,

for a υ > 0, which may be used to conclude that (v) holds via

∥Γ−1
k,n∥2 =

1

λmin(Γk,n)
≤ (cυ)−1δ−2

k,n.

To demonstrate the last claim, note that with the results just derived, under our assump-

tions we have,

∥Ĉk,n∥2 ≤ ∥Ĉk,n−Ck,n∥2+∥Ck,n∥2 = OP

(√
Bk,n logBk,n

nδ2k,n

)
+O

(
δk,n
√
Bk,n

)
= OP

(
δk,n
√

Bk,n

)
,

and, using inequality (5.8.2) from Horn and Johnson (2013),

∥Γ̂−1
k,n∥2 ≤ ∥Γ−1

k,n(I + [Γ̂k,n − Γk,n]Γ
−1
k,n)

−1∥2
≤ ∥Γ−1

k,n∥2∥(I + [Γ̂k,n − Γk,n]Γ
−1
k,n)

−1∥2

≤ ∥Γ−1
k,n∥2

(
1− ∥[Γ̂k,n − Γk,n]Γ

−1
k,n∥2

)−1

≤ ∥Γ−1
k,n∥2

(
1− ∥Γ̂k,n − Γk,n∥2∥Γ−1

k,n∥2
)−1

= OP(δ
−2
k,n).

(S29)

Using these intermediate results along with (ii) - (v) and our hypotheses we obtain that

∥ψ̂k,n − ψk,n∥2 = ∥Γ̂−1
k,nĈk,n − Γ−1

k,nCk,n∥2
≤ ∥(Γ̂−1

k,n − Γ−1
k,n)Ĉk,n∥2 + ∥Γ−1

k,n(Ĉk,n − Ck,n)∥2
≤ ∥Γ−1

k,n∥2∥Γk,n − Γ̂k,n∥2∥Γ̂−1
k,n∥2∥Ĉk,n∥2 + ∥Γ−1

k,n∥2∥Ĉk,n − Ck,n∥2

= OP

(√
B2
k,n logBk,n

δ6k,nn

)
+OP

(√
Bk,n logBk,n

δ6k,nn

)
= oP(1),

by Assumption 3 part (ii), since we have Bk,n ≤ ∆k,nδ
−1
k,n and hence the dominant term above
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vanishes since for all large enough n,√
B2
k,n logBk,n

δ6k,nn
≤ n−1/2∆k,nδ

−4
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)

ι = o(1).

Finally, by (iii) and (iv) and Assumption 3 part (ii) we have

∥Γ̂k,n∥2 ≤ ∥Γ̂k,n − Γk,n∥2 + ∥Γk,n∥2 = OP

(√
Bk,n logBk,n

n

)
+O(δk,n) = oP(1),

since δk,n → 0 and for all large enough n,√
Bk,n logBk,n

n
≤ n−1/2∆k,nδ

−1
k,n log(∆k,nδ

−1
k,n) ≤ δ3k,nn

−1/2∆k,nδ
−4
k,n(∆k,nδ

−1
k,n)

ι = o(1).

Lemma S21. The smallest eigenvalue of the Bk,n × Bk,n Gram matrix Γ̃k,n :=
∫
bk,nb

′
k,n dλ

satisfies

λmin(Γ̃k,n) ≥ υδk,n > 0,

for a υ > 0.

Proof. Since bk,n,m(x)bk,n,s(x) is non-zero only for |m − s| ≤ 3 and each bk,n,m is non-zero

only on [ξm,k,n, ξm+4,k,n)] (e.g. (20) p. 91 of de Boor, 2001), Γ̃k,n is a symmetric banded

Toeplitz matrix.S24 Its entries can be computed by direct integration:

[Γ̃k,n]m,s = δk,n ×



151
315

if m = s

397
1680

if |m− s| = 1

1
42

if |m− s| = 2

1
5040

if |m− s| = 3

0 if |m− s| > 3

.

Let f0 := 151
315

, f1 := f−1 := 397
1680

, f2 := f−2 := 1
42

and f3 := f−3 := 1
5040

and let fs := 0 for

|s| > 3. Now, let f(θ) :=
∑3

s=−3 fse
i(sθ). Then, Γ̃k,n/δk,n is then the matrix generated by f

in the sense that Γ̃k,n/δk,n = Tn(f) :=
∑min(Bk,n−1,3)

s=−min(Bk,n−1,3) fkJ
s
n where each Js

n is the Bk,n×Bk,n

matrix which is zero everywhere except for the (i, j)-th entries where i−j = s, where it has a

value of 1.S25 Since f ∈ L1([−π, π]) and is real on [−π, π] by Theorem 6.1 in Garoni and Serra-

S24As can be easily verified, unlike in the case of linear (κ = 2) or quadratic splines (κ = 3), this matrix is
not diagonally dominant. In the case of κ ∈ {2, 3} this argument could be completed in a simpler fashion
by using the Gershgorin circle theorem.
S25See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f ∈ L1([−π, π]).
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Capizzano (2017) we have that λmin(Γ̃k,n) = δk,nλmin(Γ̃k,n/δk,n) ≥ δk,n infθ∈[−π,π] f(θ) = δk,nυ,

where υ := infθ∈[−π,π] f(θ) > 0.

Lemma S22. Suppose ξ ∈ RN+1 such that a = ξ0 < ξ1 < · · · < ξN = b, h := maxi∈[N ] ξi −
ξi−1, and let Gl(ξ) be the linear space formed by degree l splines with knots ξ. Then, if

f ∈ C l−1[a, b] we have that

inf
g∈Gl(ξ)

∥g − f∥∞ ≤ (l + 1)!

2l
hl−1∥f (l−1)∥∞ = clh

l−1∥f (l−1)∥∞,

where cl depends only on l.

Proof. This is a special case of Theorem 20.3 in Powell (1981).

S6 Power optimality under strong identification

In either the setting considered in the main text or that introduced in Section S1, consider

local alternatives of the type given in (17). We now prove the limiting power statements

claimed in equations (18), (19) and (20).

Proposition S2. Suppose that Assumptions 1, 2 and 3 (or S1, S2, S3 and S4) hold, α ∈ R
and Ĩθ > 0. Then, (18) holds.

Proof. Apply Proposition S3 in the case where Lα = 1 to obtain

lim
n→∞

P n
θn(q,d,h)φn = 1− P

(
χ2
1(Ĩθq

2) ≤ ca

)
.

The right hand side is the power function of the test ψ(Z) := 1{Z2 > ca} for Z ∼ N (Ĩ1/2
θ q, 1).

If X = Z − Ĩ1/2
θ q, then

ψ(Z) = 1{(X − Ĩ1/2
θ q)2 > ca} = 1{|X − Ĩ1/2

θ q| > za/2}, X ∼ N (0, 1),

hence Eψ(Z) is (18).

Proposition S3. Suppose that Assumptions 1, 2 and 3 (or S1, S2, S3 and S4) hold and Ĩθ

is positive definite. Then, (19) holds.

Proof. The proof of Theorem 1 (or Theorem S1) showed that the conditions of Theorem

2 hold. Therefore, by (40), cn is equal to the 1 − a quantile of a χ2
Lα

distribution with

41



probability 1 for all large enough n. By (38), (39), Le Cam’s third lemma (e.g. Example 6.7

in van der Vaart (1998)) and Theorem 12.14 in Rudin (1991),

√
nPnκ̂n,γ̄n ⇝ N (Ĩθq, Ĩθ) under P n

θn(q,d,h).

By condition 3, the mutual contiguity which follows from (38) and Example 6.5 in van der

Vaart (1998), Proposition S1 and Theorem 9.2.3 in Rao and Mitra (1971)

Ŝn,γ̄n ⇝ χ2
Lα
(q′Ĩθq) under P n

θn(q,d,h),

from which the result follows.

Proposition S4. Suppose that Assumptions 1, 2 and 3 (or S1, S2, S3 and S4) hold and Ĩθ

is positive definite. Then, (20) holds.

Proof. By arguing exactly as in Proposition S3 with convergent sequences (qn, gn, hn) →
(q, d, h) replacing the fixed (q, d, h) in that Proposition one obtains that

Ŝn,γ̄n ⇝ χ2
Lα
(q′Ĩθq) under P n

θn(qn,dn,hn),

and hence

lim
n→∞

P n
θn(qn,gn,hn)φn = 1− P

(
χ2
Lα
(q′Ĩθq) ≤ ca

)
, (S30)

with ca the 1 − a quantile of a χ2
Lα

distribution. The proof is completed by a standard

subsequence argument. Note first that the map (q, d, h) 7→ q′Ĩθq from V → R is continuous.

As K⋆
u is compact this function attains its infimum, hence

u = inf{q′Ĩθq : (q, d, h) ∈ K⋆
u} = min{q′Ĩθq : (q, d, h) ∈ K⋆

u}.

Taking (q⋆, d⋆, h⋆) ∈ K⋆
u such that q⋆Ĩθq⋆ = u, we have by (S30)

lim sup
n→∞

inf
(q,d,h)∈K⋆

u

P n
θn(q,d,h)φn ≤ lim

n→∞
P n
θn(q⋆,d⋆,h⋆)φn = 1− P

(
χ2
Lα

(u) ≤ ca
)
=: R. (S31)

There is a sequence (vn)n∈N ⊂ K⋆
u and a subsequence (nj)j∈N such that

lim
j→∞

vnj
= v⋆ = (q⋆, d⋆, h⋆) ∈ K⋆

u

and

S := lim inf
n→∞

inf
(q,d,h)∈K⋆

u

P n
θn(q,d,h)φn = lim

j→∞
P

nj

θnj (qnj ,dnj ,hnj )
φnj

. (S32)
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Construct a new sequence (v∗m)m∈N as follows. For all m ∈ [nj, nj+1)∩N for some j ∈ N put

v∗m = vnj
and for m = 1, . . . , n1 put v∗m = vn1 . By construction limm→∞ v∗m = v⋆. By (S30)

lim
m→∞

Pm
θm(v∗m)φm = 1− P

(
χ2
r (u

⋆) ≤ ca
)
≥ R, with u⋆ = (q⋆)

′Ĩθq⋆ ≥ u.

For any ε > 0, there is a M ∈ N such that if m ≥ M , Pm
θm(v∗m)φm ≥ R− ε by the preceding

display. Taking a subsequence njk such that for all k ∈ N we have mk = njk ≥M gives

S = S − P
njk

θnjk
(v∗njk

)φnjk
+ Pmk

θmk
(v∗mk

)φmk
≥ S − P

njk

θnjk
(v∗njk

)φnjk
+R− ε.

Take k → ∞ to conclude (via (S32)) that S ≥ R − ε. Since ε > 0 was arbitrary, it follows

that S ≥ R. Combine with equations (S31) and (S32) to obtain (20).

S7 Additional simulation results

In this section we provide a number of additional simulation results.

S7.1 Truncation in the baseline model

In our main simulations we truncated the effective information matrix estimate at machine

precision, i.e. ν
1/2
n = 10−308. Here we investigate the sensitivity of the rejection frequencies to

this choice. Specifically, we replicate Table 2 from the main text, fixing B = 6, but allowing

for different truncation rates ν
1/2
n = 10−308, 10−5, 10−1.S26 The value 10−1 is a high truncation

value which implies that we end up truncating often when all densities are Gaussian. The

results are shown in Table S1.

We find that the results are not sensitive to the truncation parameter choice. Comparing

machine precision to ν
1/2
n = 10−5 yields no differences at all, whereas ν

1/2
n = 10−1 makes the

test slightly conservative. Closer inspection reveals that the under rejection is due to cases

where all eigenvalues are truncated and hence rank(Ît
γ̂) = 0. In Theorem 1 this corresponds

to the conservative case.

S7.2 Additional power results for the baseline model

Figure 4 in the main text compared the power of different tests for the baseline model

Yi = A−1ϵi for the case where n = 1000. Here we show the results for n = 200 and n = 500.

S26Recall that the specification corresponds to the baseline model Yi = A−1ϵi, with A a rotation matrix
parametrized by the Cayley transform. The first shock is always drawn from a Gaussian distribution whereas
the remaining k = 2, . . . ,K are from different distributions whose densities are shown in Figure 3.
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Specifically, Figures S1 and S2 show the results.

Overall, the patterns that we find are similar as in the main text. One thing that stands

out is that the Sgmm test over-rejects for these smaller sample sizes, essentially confirming

the results in Table 3. It is possible that a more careful selection of the relevant higher order

moments will improve this finding.

Besides this our two main findings from the main text hold. First, the standard LM test

is the preferred approach whenever the true density is known, but the semi-parametric score

test comes close in terms of power. Second, for all other densities the semi-parametric score

test shows the highest power.

S7.3 Additional power results for the LSEM

Figure 5 in the main text compared the power of different tests for the LSEM model for

the case where n = 1000. Here we show the results for n = 200 and n = 500. Specifically,

Figures S3 and S4 show the results.

We find that for n = 200 the power of tests is generally quite low, indicating that for

small sample sizes little can be learned by exploiting deviations from the Gaussian density.

This holds most notably for the Student’s t densities, the skewed unimodal density and the

bimodal density. Intuitively, given a small sample these densities are hard to distinguish

from the normal density and little can be learned about the parameter α. A reassuring

finding is that the null rejection frequency of the test remains well controlled. These findings

persist when we increase to n = 500, though the power does improve as one would expect.

Overall, the implementing the test with one-step efficient estimates leads to higher power,

but the null rejection frequency of the test is controlled less well. Therefore we recommend

using OLS estimates for β when the sample size is small.

S7.4 Heteroskedastic LSEM model

In this section we study the empirical rejection frequency (under the null) of the semi-

parametric score test for the heteroskedastic baseline model. Specifically we consider

Yi = A(α, σ,Xi)
−1ϵi A(α, σ,Xi)

−1 = L(σ)D(σ, X̃i)
1/2R(α)′ , (S33)

where R(α) is a rotation matrix parametrized by the Cayley transformation of a skew-

symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017), L(σ) is lower triangular

with positive diagonal elements and D(σ, X̃i) is a diagonal matrix with diagonal elements
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given by

[D(σ, X̃i)]jj = exp
(
σ′
j1X̃i

)
, j = 1, . . . , K ,

where σj1 is a (d − 1) × 1 parameter vector. Note that the average scaling of the errors is

captured by L(σ) andD(σ, X̃i) is the only heteroskedastic part. More elaborate specifications

that allow off-diagonal elements of L to depend on Xi are also possible.

The results for different sample sizes, dimensions K and number of explanatory variables

are shown in Table S2. Overall, we find a similar pattern as for the LSEM model from the

main text (cf Table 4). When K = 5 and the sample size is small, i.e. n = 200, the test

tends to over-reject. The over-rejection vanishes for larger sample sizes. A slight difference

is observed for heavy tailed densities (e.g. t(5)) where even with n = 1000 there is still some

over-rejection.

S8 Additional empirical results

In this section we present some additional results for the returns to schooling application of

section 6. Specifically, we consider the more flexible model from Section S1 which allows for

conditional heteroskedasticity.

Starting from the baseline linear IV model with a possibly scalar endogenous instrument:

yi = α1wi + b′yXi + ui

wi = πzi + b′wXi + vi

zi = BzXi + (α2/σu)ui + ei

, (S34)

We now allow the scaling of the errors σu, σv and σe to be a flexible functions of Xi. Specifi-

cally, we follow Wooldridge (2012, Chapter 8) and model the scales using flexible functions,

i.e.

σj(Xi) = σj,0 exp
(
σj1X̃i,1 + . . .+ σjdX̃i,d−1

)
, j = u, v, e ,

see also Romano and Wolf (2017) for more elaborate specifications. The coefficients σik are

estimated along with the other well identified parameters. Following (23) we write the model

in our general form

Yi = BXi + A−1(α, σ,Xi)ϵi , (S35)

A−1(α, σ,Xi) =

 σu(Xi) + α1σv(Xi)ρ+ α1πα2 α1

√
1− ρ2σv(Xi) α1πσe(Xi)

ρσv(Xi) + π′α2

√
1− ρ2σv(Xi) π′σe(Xi)

α2 0 σe(Xi)

 ,
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which shows that the model is a special case of (S1). For this specification we reconstruct

the confidence set for α = (α1, α2). The result is shown in Figure S5.

We find that the confidence region is quite similar when compared to the homoskedastic

one. The volume is slightly smaller and there is more mass on the probability that α2 is

positive. Importantly however, the main conclusion remains the same. Even when relaxing

the instrument validity assumption the effect of education is positive and quite precisely

identified.

An obvious caveat is that this result is obtained under the additional assumption that

the model for heteroskedasticity is correctly specified. An open question is how to handle

model mis-specification in the class semi-parametric LSEM models. We leave this for future

research.
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Figure S1: Power Comparison Baseline model n = 200
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Notes: Empirical power curves for the baseline model with k = 2 and n = 200. Each plot corresponds to the

choice for densities ϵk, for k ≥ 2, where the numbers correspond to the different densities listed in Figure 3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.
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Figure S2: Power Comparison Baseline model n = 500
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Notes: Empirical power curves for the baseline model with k = 2 and n = 500. Each plot corresponds to the

choice for densities ϵk, for k ≥ 2, where the numbers correspond to the different densities listed in Figure 3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.

50



Figure S3: Power LSEM n = 200
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 200. Each plot corresponds

to the choice for densities ϵi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure S4: Power LSEM n = 500
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 500. Each plot corresponds

to the choice for densities ϵi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure S5: Confidence sets: returns to schooling
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(a) Heteroskedastic

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

,2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

,
1

(b) Homoskedastic

Notes: We show 95% (light gray) and 67% (dark gray) confidence sets for α = (α1, α2), where α1 captures

the effect of education on log wages and α2 capture the correlation between the instrument (proximity to

schooling interacted with parental education) and the error of the log wage equation. The red line indicates

the confidence interval under the restriction of instrument exogeneity, i.e. α2 = 0. Figure (a) shows the result

after inverting the Ŝγ̂ test statistic with heteroskedastic errors. Figure (b) shows the result after inverting

the same test statistic but with homoskedastic errors.
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Table S1: Rejection Frequencies Ŝγ̂ test for Baseline model: truncation

n K ν
1/2
n 1 2 3 4 5 6 7 8 9 10

200 2 10−308 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 2 10−5 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 2 10−1 0.051 0.047 0.048 0.041 0.050 0.049 0.047 0.049 0.050 0.044

200 3 10−308 0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047

200 3 10−5 0.046 0.041 0.049 0.036 0.045 0.052 0.046 0.048 0.049 0.047

200 3 10−1 0.046 0.043 0.049 0.036 0.044 0.052 0.046 0.049 0.049 0.045

200 5 10−308 0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042

200 5 10−5 0.034 0.040 0.037 0.037 0.034 0.044 0.041 0.048 0.044 0.042

200 5 10−1 0.041 0.039 0.040 0.036 0.037 0.047 0.042 0.050 0.044 0.040

500 2 10−308 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049

500 2 10−5 0.050 0.044 0.052 0.045 0.051 0.052 0.052 0.043 0.049 0.049

500 2 10−1 0.050 0.044 0.052 0.045 0.031 0.052 0.052 0.043 0.049 0.049

500 3 10−308 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048

500 3 10−5 0.048 0.046 0.040 0.047 0.050 0.055 0.054 0.047 0.051 0.048

500 3 10−1 0.038 0.048 0.042 0.045 0.050 0.055 0.054 0.047 0.051 0.051

500 5 10−308 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043

500 5 10−5 0.042 0.038 0.041 0.039 0.045 0.050 0.040 0.050 0.052 0.043

500 5 10−1 0.043 0.034 0.050 0.040 0.047 0.051 0.041 0.050 0.052 0.042

1000 2 10−308 0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 2 10−5 0.056 0.048 0.045 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 2 10−1 0.010 0.048 0.041 0.047 0.050 0.053 0.049 0.049 0.045 0.050

1000 3 10−308 0.046 0.044 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047

1000 3 10−5 0.046 0.040 0.046 0.042 0.049 0.050 0.046 0.051 0.049 0.047

1000 3 10−1 0.039 0.044 0.035 0.043 0.049 0.050 0.046 0.050 0.049 0.047

1000 5 10−308 0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046

1000 5 10−5 0.044 0.042 0.043 0.038 0.045 0.050 0.043 0.050 0.049 0.046

1000 5 10−1 0.043 0.050 0.044 0.036 0.050 0.053 0.042 0.053 0.049 0.047

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the baseline model Yi = A−1ϵi. The test has nominal level a = 0.05. The columns denote

the sample size n, the dimension of the model K, the truncation rate ν
1/2
n and the choice for densities ϵik,

for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3.
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Table S2: Rejection Frequencies Ŝγ̂ test for Heteroskedastic model

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.061 0.061 0.065 0.072 0.054 0.053 0.054 0.040 0.056 0.045

200 2 3 0.063 0.069 0.070 0.085 0.067 0.061 0.058 0.047 0.062 0.051

200 3 2 0.074 0.088 0.092 0.127 0.076 0.071 0.081 0.047 0.081 0.056

200 3 3 0.079 0.093 0.103 0.145 0.080 0.078 0.082 0.044 0.081 0.065

200 5 2 0.126 0.167 0.197 0.279 0.132 0.097 0.068 0.056 0.057 0.080

200 5 3 0.151 0.180 0.209 0.307 0.151 0.107 0.065 0.062 0.059 0.080

500 2 2 0.050 0.060 0.057 0.075 0.058 0.054 0.035 0.045 0.061 0.051

500 2 3 0.054 0.060 0.062 0.079 0.063 0.055 0.040 0.048 0.052 0.050

500 3 2 0.061 0.074 0.079 0.110 0.060 0.063 0.044 0.046 0.078 0.051

500 3 3 0.070 0.079 0.084 0.115 0.064 0.058 0.052 0.048 0.074 0.050

500 5 2 0.084 0.113 0.139 0.201 0.091 0.075 0.050 0.060 0.097 0.069

500 5 3 0.094 0.132 0.158 0.229 0.095 0.090 0.047 0.053 0.091 0.061

1000 2 2 0.059 0.060 0.057 0.066 0.053 0.050 0.026 0.040 0.057 0.045

1000 2 3 0.055 0.055 0.062 0.072 0.049 0.053 0.027 0.046 0.054 0.053

1000 3 2 0.056 0.062 0.069 0.087 0.056 0.056 0.030 0.047 0.072 0.050

1000 3 3 0.053 0.067 0.076 0.102 0.054 0.055 0.035 0.045 0.065 0.057

1000 5 2 0.071 0.092 0.101 0.150 0.074 0.051 0.048 0.042 0.051 0.051

1000 5 3 0.072 0.092 0.100 0.145 0.071 0.052 0.049 0.046 0.052 0.050

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the heteroskedastic model Yi = A(α, σ,Xi)
−1ϵi. The test has nominal level a = 0.05. The

columns denote the sample size n, the dimension of the model K, the number explanatory variables d and

the choice for densities ϵik, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3.
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