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Abstract  Given a loss function and a set of policy objectives, how should we
evaluate the performance of policy institutions? In this work, we show that it is
possible to evaluate policymakers with minimal assumptions about the underly-
ing economic model. The distance to minimum loss—the component of the loss
for which a policy institution can be held accountable—can (i) be computed from
well-known and estimable sufficient statistics, namely the impulse responses to
policy and non-policy shocks, and (ii) be decomposed into its shock-specific com-
ponents. This decomposition reveals which macroeconomic shocks were most
costly to overall performance and identifies directions for improvement. Applying
the methodology to U.S. monetary policy since 1879, we find no material im-
provement over the first 100 years, with substantial and broad-based gains emerg-
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1. INTRODUCTION

How should we evaluate and compare the performance of policy institutions? How
should we evaluate and compare policy makers after their term in office? These ques-
tions are of central importance to the proper functioning of democratic and accountable
institutions, yet there is little consensus on a suitable method for evaluating and comparing
performance.

A naive approach would consist of measuring performance based on realized macroe-
conomic outcomes— that is, on the realized value of some loss function. For instance,
we could assess a central banker based on average inflation and unemployment outcomes
over her term. Unfortunately, that approach suffers from numerous confounding problems,
as many features of the economy —the economic environment— are outside policy mak-
ers’ control yet affect performance: (i) different policy makers may face different initial
conditions upon beginning their term (e.g., a central banker may inherit a strong or weak
economy from her predecessor), (ii) different policy makers may face different economic
disturbances (e.g., a central banker may experience a financial crisis or an energy price
shock that will affect her ability to stabilize inflation and unemployment), and (iii) differ-
ent policy makers may live in different economies (e.g., a steeper or flatter Phillips curve
will affect a central banker’s ability to control inflation). In sum, the economic environment
can confound performance.

So, what makes a policy institution good or bad? Our starting point is simple: policy
makers react to the state of the world by taking actions to minimize a loss function, i.e. they
use their policy instruments to achieve certain policy objectives. A policy maker’s reaction
to the state of the world can be expressed as a policy rule —a reaction function—, and a
policy maker is best performing, when her reaction function is “optimal”, i.e., delivers the
minimum loss possible given the environment. In that context, evaluating a policy maker
requires measuring the distance between the policy maker’s rule and the optimal rule, that
is measuring the distance to the minimum loss possible given the environment.

To characterize the minimum feasible loss in a given economic environment, one ap-
proach is to use a structural model fitted to data spanning the policy maker’s term, derive
the optimal rule and compute the associated minimum loss. A risk with this approach, how-

ever, is model misspecification: if the model is misspecified, evaluations may be inaccurate.
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In this paper, we propose a semi-structural method to evaluate policy makers with min-
imal assumptions about the underlying economic model. Specifically, for a large class of
linear forward looking macro models and quadratic loss functions, it is possible to measure
the distance to the optimal reaction function —and distance to minimum loss— from well
known and estimable sufficient statistics: the impulse responses to policy and non-policy
shocks.

To characterize the optimal policy rule without having to rely on a specific underlying
model, we exploit two new results. First, an identification result: knowledge of the optimal
reaction to structural shocks alone is sufficient to characterize the optimal policy rule—
that is, to construct a policy rule that minimizes the loss function given the environment.
Second, a sufficient statistics result: the optimal reaction to structural shocks can be char-
acterized from the impulse responses to policy and non-policy shocks.

Taken together, these results imply that the impulse responses to policy and non-policy
shocks are sufficient to construct policy evaluation statistics at the shock level: the distance
to the optimal policy response to a particular structural shock (say a financial shock, an oil
shock, etc.) and the distance to minimum loss for that particular shock. The total distance
to minimum loss —a measure of overall performance— can then be obtained by simply
summing the shock-specific distances to minimum loss.

An attractive feature of our constructive formulation of the total distance to minimum
loss is that it enables researchers to not only evaluate overall performance but also to un-
derstand the reasons behind suboptimal performances. By decomposing the total DML
into its shock-specific component, researchers can isolate which types of shocks were most
costly to overall performance and to identify directions for improvement.

In a dynamic setting, computing the total distance to minimum loss requires identifying
all policy and non-policy news shocks across all possible horizons. Since this data require-
ment is rarely met in practice, we show how subset statistics, which rely on only a subset
of shocks, can be used to evaluate policymakers, subject to two qualifications.

First, when a researcher cannot identify all shocks affecting a policymaker during her
term, the overall evaluation may not be exhaustive, as some shocks are missing. To address
this “missing shocks” problem, we propose two solutions: (i) we derive bounds on the total
distance to minimum loss (using the same set of sufficient statistics and without additional

assumptions), or (i1) we show how it is possible directly estimate the total DML from oracle
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forecast innovations instead of structural shocks. The latter approach, however, requires an
additional assumption —the ability to construct oracle forecasts.

Second, when a researcher cannot identify all types of policy shocks (for instance, for-
ward guidance shocks at all different horizons), the characterization of the optimal reaction
function is only “partial”, as some possible policy path responses are not considered. To
give a concrete example, say we only identify policy shocks that affect the short-end of
the policy path, then we can only explore the optimality of the short end of the policy path
response to shocks. This does not invalidate the policy evaluation, but this is a limitation to
keep in mind when interpreting the results.

We apply our methodology to study the performance of US monetary policy over the
past 150 years and revisit many important questions regarding the conduct of monetary
policy: (i) Did monetary policy improve since the time of the Great Depression? Is the
Great Moderation post-Volcker a sign of good policy or simply the outcome of good luck?
(e.g., Clarida et al., 2000, Gali et al., 2003, Gali and Gambetti, 2009)? (i1) While many
observers agree that monetary policy was superior during the 2007-2009 financial crisis
than during the 1929-1933 financial crisis (e.g., Wheelock et al., 2010, Almunia et al.,
2010), can we confirm and quantify this improvement? In other words, did Bernanke fulfill
his promise to Milton Friedman when he said that the Fed “won’t do it again”, i.e., won’t
repeat the mistakes of the Great Depression (Bernanke, 2002)? (iii) How does the post
World War II Fed and the de-anchoring of inflation expectations compare to de-anchoring
of inflation expectations in the interwar Fed period (Romer and Romer, 2013)? (iv) Finally,
did the founding of the Federal Reserve in 1913 lead to better macroeconomic outcomes
compared to the passive gold standard era (e.g., Bordo and Kydland, 1995)?

To assess monetary policy performance across historical periods, we construct and de-
compose the total DML into the separate contributions of six macro shocks: (i) financial
shocks, (ii) government spending shocks, (iii) energy price shocks, (iv) inflation expec-
tation shocks, (v) productivity shocks and (iv) monetary shocks, all identified using the
state-of-the-art in the empirical macro literature. We consider US monetary policy over
four distinct periods: (a) 1879-1912 covering the Gold standard period until the founding
of the Federal Reserve, (b) 1913-1941 covering the early Fed years to the US entering
World War 11, (c) 1954-1984 covering the post World War II period until the beginning of
the Great Moderation, and (d) 1990-2019 covering the Great Moderation period, the finan-
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cial crisis and up to the COVID crisis. For the Gold Standard period, the identification of
monetary shocks is less developed, and we propose a new identification strategy based on
large gold mine discoveries.

Given a loss function that places equal weight on inflation and unemployment, our main
results are as follows: (i) we estimate large and uniform improvements in the conduct of
monetary policy, but only in the last 30 years, (ii) we cannot reject that the Fed’s reaction to
recent financial shocks (notably the 2007-2008 financial crisis) was appropriate, in contrast
to the “highly” sub-optimal reaction of the Fed to the financial shocks of the Great Depres-
sion, (iii) the Fed’s reaction function during the 1960s-1970s is almost as sub-optimal as
the reaction function of the early Fed, though the nature of the shocks is different, and (iv)
the founding of the Fed initially led to worse performance than the passive Gold Standard.
In particular, faced with financial or government spending shocks, the Fed fared worse than

the passive Gold Standard.

Related literature An early contribution is Fair (1978) who highlights the distortions
stemming from different initial conditions and economic environments. His solution was
to adopt optimal control methods to compare policymakers through the lens of a fully spec-
ified model. Modern versions of this approach include Gali et al. (2003), Gali and Gertler
(2007), Blanchard and Gali (2007). Unfortunately, specifying the correct model for the pol-
icy rule or the non-policy block is a difficult task (e.g., Svensson, 2003, Mishkin, 2010). A
less structural approach has studied monetary performance through the lens of estimated
policy rules —requiring only the specification of a policy rule— (e.g. Taylor, 1999, Clarida
et al., 2000, Orphanides, 2003, Coibion and Gorodnichenko, 2011). In particular, a num-
ber of studies compared the Fed in the pre- and post-Volcker periods by assessing whether
the Taylor principle was satisfied. However, beyond the Taylor principle, that approach can
say little about the optimality of reaction functions, and thus can only provide a coarse
evaluation of reaction functions.

In the context of fiscal policy, Blinder and Watson (2016) improve on the naive ap-
proach of policy evaluation —measuring performance based on unconditional realized
outcomes— by projecting out specific shocks, i.e., by trying to control for good (or bad)
luck. In contrast, our approach projects on the space spanned by specific non-policy shocks

and studies performance in that space.



Closer to our work, the literature has proposed reduced-form methods to study policy rule
counterfactuals (e.g., Sims and Zha, 2006, Bernanke et al., 1997, Leeper and Zha, 2003),
though these approaches are not fully robust to the Lucas critique. Instead, our approach
builds on recent work showing that robustness to the Lucas critique is possible in a large
class of macroeconomic models (McKay and Wolf, 2023, Caravello et al., 2024): When the
coefficients of the non-policy block are independent of the coefficients of the policy block,
it is possible to reproduce any policy rule counterfactual with an appropriate combina-
tion of policy news shocks at different horizons. Our work exploits a little-studied class of
policy rule counterfactuals —counterfactual reactions to non-policy shocks—, which have
appealing properties: (i) the class is sufficient to characterize the optimal reaction function,
(i1) the class allows to split the optimal policy problem into computationally simple sep-
arate problems, allowing us to evaluate policymakers under subset identification, and (iii)
each sub-problem has an economic interpretation; allowing us to understand the sources
of sub-optimal policy decisions, for instance the types of shocks that policymakers could
have handled better. This last property allows us to relate to and quantify a large literature
on previous policy misses, notably the seminal narrative studies of US monetary policy
(Friedman and Schwartz, 1963, Meltzer, 2009).

Lastly, our paper relates to the sufficient statistics approach for macro policy proposed
in Barnichon and Mesters (2023). Different from our focus on reaction function evaluation,
Barnichon and Mesters (2023) focus on the time ¢ optimal policy problem —how to set
the policy path today given the state of the economy—, instead of the unconditional policy
problem that we consider here —how to set up the policy rule to minimize the uncondi-
tional loss—. Barnichon and Mesters (2023) show that the characterization of the optimal
targeting policy rule can be reduced to the estimation of two sufficient statistics (i) the im-
pulse responses of the policy objectives to policy shocks, and (ii) oracle forecasts for the
policy objectives conditional on some baseline policy rule. This paper uses a different set of
sufficient statistics—policy and non-policy shocks—, providing an economic interpretation

for the sources of optimization failures, as discussed above.

2. ILLUSTRATIVE EXAMPLE

Before formally describing our general framework, we first illustrate how it is possible

to evaluate and compare policy makers without having access to the underlying economic
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model nor the policy rule. To illustrate the method, we take a baseline New Keynesian (NK)
model, which allows to highlight the main mechanisms of our approach.
The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model are given by

= Eymiq1 + Kz + 0y (1)

1, .
xrp=Eixi41 — ;(Zt — Eimiy1) 2)

with 7; the inflation gap, x; the output gap, i; the nominal interest rate set by the central
bank and o¢{; an iid cost-push shock with mean zero and variance ag. The parameters are
collected in 6 = (k,0,0¢)". We can think of ¢ as capturing the economic “environment”;
the slopes of the (PC) and (IS) curves and the standard deviation of the non-policy shock
(here, the cost-push shock).

The policy maker sets the interest rate following the rule

it = QT + Oc€t (3)

where o.¢; is an iid policy shock with mean zero and variance 062, and ¢ = (¢r,0¢) is a
vector of policy parameters, or the reaction function. For ¢, > 1 we can solve the model
and express the endogenous variables Y; = (74, 2¢)" and i; as functions of the exogenous
shocks Sy = (&, ¢, i.e.

Y;f = @St and it = @pSt , (4)

where © = (I', R) and ©,, = (I'y, R ;) capture the impulse responses of the non-policy vari-
ables (") and the policy variable () to the cost-push shock (I',I',) and the monetary policy
shock (R, R,). We emphasize that each impulse response depends on the environment 6

and the reaction function ¢.!

1Formally, we have




Evaluating policy makers requires taking a stance on a performance metric. To that ef-

fect, we consider the loss function
L=EY]Y;, which using (4) becomes £ =Tr(0'0) =TT +R'R, (5)

where Tr() denotes the trace operator. An “optimal reaction function” is then defined as
any ¢ that minimizes £(¢;0) given the underlying structure of the economy, i.e., given
equations (1)-(3), and expression (5) shows that minimizing the unconditional loss L is
equivalent to minimizing the sum-of-squares of the impulse responses of shocks hitting the
economy, here I and R. An optimal policy is thus a policy rule that best mutes the effects
of shocks on average.

In this example the optimal reaction function is unique and given by ¢°Pt = (¢oP", g2P') =
(rko,0) (e.g. Gali, 2015). First, exogenous policy changes are not optimal, and an optimal
policy features no policy shocks (6°P" = 0). Second, the optimal reaction coefficient ¢o°*
is the coefficient that minimizes the effects of cost-push shocks, i.e., that best mutes I'. The

minimum loss is then given by
Eopt — Fopt'Fopt7 (6)

with ['°P being equal to I evaluated at (¢°P*, #), i.e. the minimal effect of cost-push shocks

that a policy maker can achieve given the environment 6.

A naive approach to policy evaluation

Consider a policy maker with reaction function ¢° during her term and associated loss
£°. How should we evaluate that policy maker?

A naive approach would consist in comparing realized losses. Specifically, (i) compute
the average loss during a policy maker’s term, which provides an estimate of the loss £°,
and (ii) evaluate and rank policy makers based on that estimate. Policy makers with higher
average loss would then be deemed less performant. Unfortunately, the parameter vector 6
that describes the economic environment acts as a confounder by influencing the impulse
responses to shocks and thus the loss, see (4)-(5).

To illustrate how the economic environment can distort such naive policy evaluation,
consider two policy makers —Red and Blue— following the same rule ¢2 = 1.5 but oper-

ating in different environments: one with a steeper Phillips curve (s = 0.5) and the other
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. FIGURE 1.—L0SS BASED POLICY EVALUATION
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Note: The panel depicts the original loss function £(¢;0) with ¢ = (¢x,0) and traces the loss as a function of ¢, fixing
0 =06, 0. =0and o = 1. The optimal rule 9P is indicated by the filled dots. The empty dots indicated the policy maker’s
policy rule ¢2..

with a flatter Phillips curve (s

= 0.2). Figure 1 plots the loss function as a function of
the rule parameter ¢, for these two policy makers. The empty dot marks their actual policy
rule (here qb?r = 1.5 for both Red and Blue).

Since the loss for Red is lower than under Blue, a naive approach to policy evaluation
would conclude that Red is a better policy maker than Blue. However, it’s the exact oppo-
site: in this example, Red is further away from the optimal reaction function than Blue. The
filled dots mark the optimal reaction function ¢°P* for each policy maker, and the distance
to the optimal reaction function ¢° — $°P* —the horizontal distance between the filled dot
and the empty dot—, is larger for Red than for Blue. In other words, Red performs less
well than Blue. The reason for these different conclusions is the underlying environment:
in the steep Phillips curve world of Red, it is easier to achieve a lower loss.

To properly compare Red and Blue, we must thus take into account the environment,
i.e., measure the distance to the minimum feasible loss given the environment; the distance
AL in Figure 1. To do so, one possible approach consists in specifying a structural model,

fit that model to the data spanning the policy maker’s term and then compute the optimal
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reaction coefficient ¢°P* and the associated minimum feasible loss £°P* from that model.
In this example this amounts to specifying the Phillips and IS curves and estimating the as-
sociated parameters 6. A risk with this approach however is model mis-specification: if the
model does not capture the full complexity of the underlying environment, the policy as-
sessment can be compromised. In this paper, we propose a different approach, an approach

that requires minimal assumptions on the underlying economic model.

A sufficient statistics approach to policy evaluation

A class of policy rule counter-factuals To outline our approach we start from a simple
idea: instead of minimizing the loss with respect to the reaction coefficients in front of
endogenous variables (here ¢;) as is common in the literature (Gali, 2015), we propose to
optimize with respect to the reaction coefficients in front of structural shocks. While this
class of rule counterfactuals could seem of little direct interest, they have two important,
yet overlooked, properties: (i) the effects of counterfactual reaction to structural shocks
can be computed with minimal assumptions on the underlying model, depending only on
estimable sufficient statistics, and (ii) the optimal reaction to structural shocks is sufficient
to fully characterize the optimal policy rule and to compute the minimum attainable loss.

To see that, denote by ¢" = (¢2, 02) the policy maker’s reaction function and consider

the policy rule counter-factual

i = gz59r7rt + 0?(7’5& + Te€t) +026t , (7
—_——

Reaction adjustment

where 7 = (7¢, 7¢) is a vector of responses to structural shocks. Unlike the original reaction
function (3), the modified reaction function (7) fixes the reaction coefficients gzﬁo at their
baseline value.

Following the same steps that led to (4), we can solve the model under that modified

policy rule and express the endogenous variables as a function of exogenous shocks to get
V;=(©"+R7)S;  and iy =(0)+RIT)S; (8)

where the © superscript indicates that the impulse response is computed under (¢°, #), such

that ©% = (I'°, R?). From expression (8), we can see how the rule adjustment 7 modifies
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the impulse response to shocks. Take for instance I'V, the effect of the cost-push shock.
A reaction adjustment 7. changes the effect from %t I'0 4+ ROTg, which means that the
“old” impulse responses I'’ and R” are all we need to compute the effects of the policy
rule counter-factual (7). A similar result holds for how 7. modifies the impulse response
RY. Intuitively, a change 7 in the reaction to an exogenous variable (here zi or €) has

equilibrium effects that can be measured by the causal effects of policy shocks, i.e. RP.

Optimal reaction adjustment From (8), we can use 'Y and RV to search for the optimal
reaction coefficient to structural shocks. To that effect, consider an auxiliary loss function

that takes 7 as its argument while holding ¢° fixed:

L(r)=E(Y/Y;)  with Y;=(0"+R"7)S,
= Tr[(0° + R7) (©° + RO7)]
Solving for the optimum reaction adjustment 7* = (7{, 7") = argmin- L(7), we get?
7r=—(RYRY)IROTY and rF=-1. 9)
and
L(7*) = L£OP* . (10)

In other words, optimizing with respect to 7 is sufficient to fully characterize the optimal
reaction function, and the auxiliary loss function has the same minimum as the original
loss function £. The statistic 7* is the optimal reaction adjustment:? (i) Tg modifies the

policy rule coefficient for non-policy shocks & in order to reach I'°P'; the minimal effect

2To show L(7*) = £°P¢, plug in 7* into the auxiliary loss function to obtain

L(r*) =% (1 = RO (RYR%) 'R )r°
2
_ O¢ = ﬁOPt ,
1+k

using the expressions for I'’ and R” defined in footnote 1.

Note how Tg is the coefficient of a regression of % on —R%; a regression in impulse response space. Intu-
itively, 'Y (the impulse response to a cost-push shock) captures what the policy maker did on average to counteract
cost-push shocks with his rule #°, while RY (the impulse response to a monetary shock) captures what the policy

maker could have done to counteract cost-push shocks —how reacting to &; by 7 could have better stabilized the
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of cost-push shock that a policy maker can achieve given the environment 6, and (ii) 7
cancels monetary mistakes by setting policy shocks back to zero with 7 = —1.

While the optimal reaction adjustment allows to fully characterize the optimal reaction
function, it does not have a transparent economic interpretation. Instead, we can compute
the corresponding optimal policy response adjustment A©,, = @g — @gpt, which captures
how the systematic policy responses to shocks should be adjusted. Using (8) we have that

AO, = —RIT*, (11)

as @Zpt = @2 + Rgr*. The columns of A©,, capture the optimal correction to the policy
response to each type of shock (¢ or €), and they allow to assess the “quality” of the policy
maker’s response to each type of shock, with larger corrections indicating a poorer reaction

function.

Distance to minimum loss With the optimal reaction adjustment 7* in hand, it is then
straightforward to get expressions for (i) AL the distance to minimum loss, and (ii) decom-

pose AL into the contribution of each structural shock. We have
AL=L0—LP = AL+ AL, (12)

where
/ / _1 / /
ALe=T'R"(RVRY) R'T®  and AL =R'RC. (13)

Intuitively, each optimal reaction adjustment focuses on a different structural shock, so that
each adjustment assesses a separate dimension of policy performance.

Decomposition (12) is at the core of our approach to policy evaluation. From (12)-(13),
we can construct the fotal distance to minimum loss AL and assess overall performance,
while expression (12) allows to decompose that total distance into separate shock-specific

components, revealing which shocks were most costly to overall performance.

effect of cost-push shocks by transforming I'% into T 4+ 7R?, see (8)—. A regression on R on T precisely
finds the 7 that minimizes the sum-of-squares of that adjusted impulse response, i.e., that best cancels out the

effects of non-policy shock. At an optimal policy rule, ' and RY should be orthogonal.

_ 0¢ —Kkot+on

*In this example, we have TE = o (in?)?
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On the duality of policy performance evaluation Note how we derived two complemen-
tary statistics to measure performance: (i) the optimal policy response adjustment (A©,),
and (ii) the distance to minimum loss (AL). The two statistics play complementary roles,
each capturing a different side of the same “performance coin”. The optimal policy re-
sponse adjustment measures the extent of good policy —it directly assesses the reaction
function—, while the distance to minimum loss (AL) captures what we ultimately care
about —the “welfare” consequences of good/bad policy. Unlike A©,, however, the dis-
tance to minimum loss is not fully under control of the policy maker, as the same gap
A®©,, could imply larger or smaller welfare losses depending on the underlying structural
parameters and shocks variance. This is the luck aspect of policy performance.

In sum, this example illustrates how we can evaluate and compare policy makers without
specifying an explicit reaction function nor a specific structural macro model. Instead, the
only requirement is to estimate two sufficient statistics: the impulse responses I' and R
over a policy maker’s term. The next sections show that these findings continue to hold for

general linear forward looking macro models.

3. ENVIRONMENT

We describe a general stationary macro environment for a policy maker (or institution)
who faces an infinite horizon economy. To describe the economy we distinguish between
two types of observable variables: non-policy variables y; € RMv and the policy instru-
ment p; € R. The policy instrument is different from the other variables as it is under the
direct control of the policy maker. To describe the economy we use a sequence space rep-
resentation (Auclert et al., 2021). Let Y = (y(, v}, ...)" denote the paths for the non-policy
variables and P = (pg, p1,...)" denote the path for the policy variable p. For instance, one
can think of P as the path of the policy rate for a central bank, while Y would typically

comprise the paths of the inflation and unemployment gaps.”

> Generalizing our approach to multiple policy instruments (p; € RM>) is a straightforward extension, but
focusing on only one policy instrument clarifies the exposition, as the policy choice reduces to setting a vector:

the policy path.
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Working under perfect foresight, we consider a generic model for the paths of the en-

dogenous variables

AyyY — AypP = BycE

: (14)
AppP — ApyY = ByeE + Byee

where € = (ep, €1,...) and B = (§,£], - - - ) are sequences of policy and non-policy shocks,
respectively. The first equation captures the non-policy block of the economy, while the
second equation captures the policy rule.

We normalize all elements of 2 and € to have mean zero and unit variance. Also, we
assume that they are serially and mutually uncorrelated, consistent with the common def-
inition of structural shocks (e.g. Bernanke, 1986, Ramey, 2016). The structural maps A
and B are conformable and may depend on underlying structural parameters. We split
them in two parts: the economic environment 6 = { A, A, By¢ } which the policy maker
takes as given, and the reaction function ¢ = { A, Ay, Bpe, Bpe }, which is under the con-
trol of the policy maker and we assume that B, is invertible. Further, we impose that ¢
and 6 are independent in the sense that 96;/0¢; = 0 for all entries ¢, j, i.e. changing the
reaction function does not directly change the coefficients # and all effects of ¢ on Y go
via the policy path P.

We denote by @ the set of all reaction functions ¢ for which the model (14) implies a

unique equilibrium, that is all ¢ for which
Ay A
A= ( yyp ) is invertible.
Apy App

Many structural models found in the literature can be written in the form of (14); prominent
examples include New Keynesian models and heterogeneous agents models.
For any ¢ € ® we can write the expected path of the non-policy variables as a linear

function of the policy and non-policy shocks.
LEMMA 1: Given the generic model (14) with ¢ € ®, we have
Y =0(¢,0)S and P=0,(¢,0)S, (15)

where S = (E',€') with conforming partition of the impulse response maps ©(¢,0) =

(0(¢,0), R(,0)) and ©(¢,0) = (I'p(¢,0), Rp(¢,0)).
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Explicit characterizations for the impulse response maps are given in the appendix. Note
the similarity between (15) and (4), as the illustrative static NK model is a special case
with only contemporaneous shocks. Lemma 1 implies that the identification of the impulse
responses requires observing part of the future shocks in = and €. That is, news shocks at
the different horizons are needed for identification. The supplementary material spells out

this point out in more detail.

Evaluation criteria

We consider a researcher who is interested in evaluating a policymaker based on their
success at stabilizing some subset of the non-policy variables y; around certain desired
targets y* for some time periods ¢t = 0,1,2,.... For ease of notation we set the targets to
zero, as we can think of y; as being defined as deviations from the desired targets.

We measure performance using the loss function
L(¢;0) =EY'WY | (16)

where W is a positive semi-definite weighting matrix, which selects and weights the spe-
cific variables and horizons that are part of the researcher’s evaluation criteria. The loss (16)
is the researcher’s evaluation criterion for scoring policymaker performance —an input into
our framework—.

Using Lemma 1, we can rewrite the loss function as
L(¢;0) = Tr(0(¢,0)W0(¢,0)) . 17)

As in the simple example, minimizing the unconditional loss £ is thus equivalent to min-
imizing the (weighted) sum-of-squares of the impulse responses to the different shocks
affecting the economy. Intuitively, minimizing this loss can be seen as a timeless definition
of optimal policy —representing the loss of a policymaker appointed at the beginning of
time and in place forever—, and an optimal policy is a policy rule that best dampens the ef-
fects of shocks. This interpretation will be useful in getting some intuition for our sufficient
statistics formula.

The actions of the policymaker are summarized by the reaction function ¢. We define a

reaction function to be optimal if it minimizes the loss function (16). Formally, the set of
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optimal reaction functions is given by

PP =< p: ¢ cargmin L(¢;0) st (14)p . (18)
pcd

The definition implies that we only consider optimal reaction functions that lie in ®; the

set of reaction functions that imply a unique equilibrium. We denote by ¢°P an arbitrary

reaction function in ®°Pt,

4. POLICY EVALUATION WITH SUFFICIENT STATISTICS

In this section, we show how we can evaluate a policymaker with a reaction function ¢°
by measuring (i) the distance to minimum loss (A L) and (ii) the optimal adjustment of the

policy path response to shocks (A©,):
AL=L"—L% and  ABG,=0)—OP", (19)

where @g = 0,(¢",0) and L? = L£(¢;0) are evaluated under the policymaker’s reaction
function and £°P' = L£(¢°Pt;6) and O9" = ©,(¢°Pt,6) are evaluated under an optimal

reaction function.

4.1. Optimal reaction adjustment and distance to minimum loss

Following the same steps as the simple example of Section 2, we propose to characterize
the optimal rule by considering a thought experiment in which we adjust the policymaker’s
reaction coefficients to the structural shocks. Specifically, consider the auxiliary reaction

function
0 0 0 = 0 0
AppP - ApyY = Bpgz. + Bpee + BpeTS , (20)

where 7 is a map of reaction adjustments to the shocks S. Each element of 7 corresponds
to a different counterfactual rule, whereby we modify how different horizons of the policy
path respond to one specific macro shock. The following lemma establishes how a rule

adjustment 7 affects the equilibrium allocation.
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LEMMA 2: Consider the generic model (14) with ¢° € ® and the modified policy rule
(20). We have

Y=©"+R’T)S and P=(00+RIT)S, (21)
where © = 0(¢°,0), 09 =0,(¢",0), R =R(¢°,0) and R =R, (¢°,0).

The reaction adjustment 7 = (7¢, 7) affects the equilibrium by changing the impulse
responses to non-policy shocks from I'Y to 'V + R072 and the impulse responses to policy
shocks from RY to RV 4+ R T , so that knowledge of the impulse responses O = ('Y, RY)
is sufficient to compute the policy rule counterfactuals embedded in the 7 adjustments.

We now define the auxiliary loss function

L(T;¢%60)=EY'WY  with Y=(0"+R'T)S
=Tr[(0° + R*T)YW(e° + RT)], (22)

which allows to trace out how changing the policymaker’s reaction to any individual shock
affects the loss. The optimal reaction adjustment is the adjustment that minimizes the aux-

iliary loss function, i.e. 7* = argmin, L(77; ¢°,#) with properties summarized as follows.
LEMMA 3: Given the generic model (14) with ¢° € ®, we have
T = —RYWRY)TIRIWE"  and  L(T*¢",0) = L. (23)

Lemma 3 states that the auxiliary loss function, when evaluated at 7 *, attains the min-
imum loss. This is our identification result: knowledge of the optimal reaction to the dif-
ferent structural shocks is sufficient to fully characterize the optimal policy rule and to
compute the minimum attainable loss £°Pt. In addition, the lemma shows that the optimal
rule adjustments can be computed using only the impulse responses O¥ = (I'°, R?).

Using this Lemma, we can derive our main result.

PROPOSITION 1: Given the generic model (14) with #° € ®, we have

1. The distance to minimum loss (DML) statistic is given by

A=Y AL,  with  AL=0YWRIRYWR)TIRYWE!, (24)
seN
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where N denotes an index set for the different shocks.

2. The optimal adjustment to the policy path response to shock s € N is given by
A6, =RYR"WR)RYWE! . (25)

Proposition 1 shows how our two policy evaluation statistics —the distance to minimum
loss (A L) and the optimal adjustment to the policy path response to shocks (A©,, ;)— can
be computed using only the impulse responses under ¢".

The first evaluation statistic —the distance to minimum loss— conveys how much lower
the loss could have been if the policymaker had performed optimally. It is a measure of
overall performance. Then, we can decompose the total distance AL into shock-specific
distances to minimum loss AL: the distance to minimum loss conditional on one type of
shock only. It is the loss that could have been avoided by responding optimally to the shock
s. This decomposition allows to isolate the types of shocks that were most costly to overall
performance. The second evaluation statistic —the optimal adjustment to the policy path
response to shocks— allows us to assess the reaction function directly: A©, ¢ measures
how the policymaker should have adjusted her policy path response to each specific macro

shock s.

4.2. Optimal reaction adjustment under subset identification

Proposition 1 requires the identification of all elements of ©Y = (T'°, RY) and Rg, which
in turn requires identifying all the different types of policy and non-policy shocks that can
affect the economy at all horizons. In practice, this is a stringent requirement. For that
reason, we now discuss how to evaluate policymakers with subset-shock identification, i.e.,
when the researcher can only identify a subset of the policy shocks € = (eg,€1,...)" and
non-policy shocks = = (§[,&],...)".

We denote the subsets of identified shocks by €5 = ()€ and Es = (2E, where each (2
defines which linear combinations of shocks at different horizons are identified. Indeed,
a credible identification strategy isolates exogenous variation in a variable of interest, but
this variation can be a combination of news shocks at different horizons (including con-
temporaneous shocks). As an example, consider the narratively identified military defense

spending news shocks of Ramey and Zubairy (2018); it is unlikely that this shock pertains
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to a unique news shock at a specific horizon 5, but it is reasonable to assume that the shock
is a linear combination of the different news shocks to military spending in =. A similar
reasoning holds for the identified policy shocks, which are likely a combination of con-
temporaneous and news shocks at different horizons. We let S5 = (2, €)' be the vector
of these identified shocks. The corresponding subsets of identified impulse responses are
6% = (%, RY) and 0%, = (T4, RS, ).

In this scenario, without further assumptions, we cannot compute the entire distance to
minimum loss AL, nor the entire map of policy path adjustments A©,. However, we can
construct subset policy evaluation statistics. To make this precise, we proceed similarly to
Section 4.1 and consider the augmented policy rule

AD P — A) Y =B).E+ B)e+ B TsSs (26)

where 7s is a map of reaction adjustments to the identified shocks Ss.

Compared to (20), note how the policy rule adjustment is restricted in two ways. First,
Ts only adjusts the policy responses to the shocks that are identified —S becomes Sg—.
Second, 7s only adjusts the policy path responses as permitted by the weighting matrix
Qe B . becomes 8269’6— In Section 4.3 we come back to these restrictions, as they are
important to understand how to conduct policy evaluations using subset statistics.

As in the full identification case, we can define the policy evaluation statistics. The subset
optimal reaction adjustment is defined as 7g = argming, L(7s; #°,0), with L(Ts; ¢°,0) o
Tr[(0% + REYTs)W(OL + RETs)| similarly to (22). The corresponding subset distance to
minimum loss is defined as AgLs = £° — L( S #Y,6), which is the distance to minimum
loss achievable by (1) adjusting the policy response to the subset of identified shocks and (ii)
using only the policy path perturbations implied by the identified policy shocks. Similarly,
the subset optimal path adjustments are given by AsOs ), = = Y Sp @Opt with ®Os,p =

t *
(T2 S Rs p) and @Op @S,p S,p7:9'

PROPOSITION 2: Given the generic model (14) with ¢0 € ®, we have

1. The subset distance to minimum loss (DML) statistic is given by

AsLs= Y AsLy with  AgLy=0Y WRG(RIWRE)IREWE!,
SENS
(27)
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where N is an index set for the identified shocks.

2. The subset optimal adjustment to the policy path response to shock s is given by
AsOp.s =R ,(RgWRg)™ RgWey . (28)

Proposition 2 parallels Proposition 1 in the case of subset shock identification; estab-
lishing how we can compute the “subset” policy evaluation statistics from the impulse

responses to a subset of identified shocks.

4.3. Evaluation under Subset Identification

With Proposition 2 in hand, a researcher can evaluate policy makers based on the subset
evaluation statistics, assessing performance from AgLs and shock-specific performance
from AsL, and As©,, ;. However, it is important to understand how subset identification
affects the computation of the minimum feasible loss and thereby how one should interpret
the subset evaluation statistics. To that effect, the following lemma helps to clarify the

discussion.

LEMMA 4: The optimization problem ming L(T;¢°,0) given (20) is equivalent to the

unconstrained optimization problem
minTr [OWO]  with  ©=6"+R'R) A6, . (29)
p

The subset optimization problem min L(7s; @0, 0) given (26) is equivalent to the con-
strained optimization problem
min TOSWOs]  with  Os=0§+ RORY A6, (30)
S,p

s.t. ABg,, € Col(R?&p) :
where 001(72% p) denotes the column space of Rg >

The first part of Lemma 4 states that the loss minimization with respect to 7 can be
equivalently reformulated as a loss minimization problem with respect to A©,,, the vector
of optimal adjustments to the policy path responses to shocks. Intuitively, characterizing

the optimal rule coefficients in front of shocks is equivalent to searching for the best policy
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path responses to shocks. The second part states a similar result in the subset identification
case. However, the subset optimization problem (30) differs from (29) in two important
ways that will affect the interpretation of the evaluation statistics AsLs and AgOgs .

First, only the effects of the identified shocks (Og) are included in the definition of the
loss function in (30), so that the constructive formulation of the total DML —the DML
for all shocks— is incomplete, being only based on the subset of shocks that could be
identified. Thus, while AgLs will still provide a summary measure of performance, it may
not be an exhaustive measure of performance, as some shocks are missing and AgLs <
AsL where AsL =3 .\ AsL; is the total distance to minimum loss, the distance for
all shocks. We will call this the “missing shocks” problem.

Second, with a limited set of policy shocks, the subset optimization is “partial” in that
not all possible counterfactual policy paths are considered when searching for the opti-
mum. We call this the “missing path” problem, and it is best understood by contrasting
the optimization problems (29) and (30) in Lemma 4: when we only identify a subset of
the policy shocks, the optimization problem is a constrained optimization problem, in that
the policy path response adjustments are constrained to lie in the span of Rgﬁp —the re-
sponses of the policy path to the identified policy shocks—. Intuitively, the policy path
response adjustment can only be a linear combination of the columns of 72?94?, as these are
the only policy path perturbations whose effects on the economy can be identified given
the available subset of policy shocks.

A simple example helps make this policy path restriction more concrete. Figure 2 shows
the impulse responses of the policy instrument to two hypothetical policy shocks that a
researcher has identified. The first policy shock affects the policy path in the short term
(R1,p), and the second shock affects the policy path in the medium term (R ;). The subset
optimal policy path response adjustment A©gs , implied by these two shocks can only be
a linear combination of R, and Rg, and will thus only explore the consequences of
changing the short-to-medium end of the policy path response to shocks. This “missing
paths” problem does not invalidate the policy evaluation, but this is a limitation to keep in
mind when interpreting the results.

In the rest of this section, we will propose approaches for “filling” these “missing shocks”

and “missing paths”.
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FIGURE 2.—Illustration of a subset path perturbation
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Note: Left column: Response of the policy path P to two hypothetical policy shocks: in blue (top row) or in red (bottom row).
Right column: Response of the policy path P to a hypothetical macro shock. The response is either the baseline response under

@O (“Baseline @g, black line) or after a reaction adjustment 71 or o (“Perturbed”: 62 + 7iRi,p for ¢ = 1,2, dashed lines).

4.3.1. Missing shocks

Bounds on the total subset DML While the subset statistics of Proposition 2 only allow
to compute the subset DML for the shocks that could be identified (the distance AsLs),
it is possible to derive bounds for the tofal subset DML AgsL —the subset DML for all
shocks— with no additional assumptions. Tight bounds imply that the missing shock prob-
lem is not severe (and the policy evaluation is close to exhaustive), whereas loose bounds
imply that we might be missing a lot of relevant shocks.

To set this up consider the augmented rule .AgpP — .Ang = 8255 + Bgee + 82696738,
which is broader than the rule adjustment (26), since it adjusts the response to all shocks
S, and not just the shocks Ss.° With this we can define the total subset DML AgL =
£0—L( ~§; #°, 0) which is the distance to the minimum loss defined by optimally respond-
ing to all shocks (in the directions allowed by the identified policy shocks). AgL cannot

®Note that the directions of the response adjustment however remain restricted by 2, i.e., by the identified

policy shocks. This is the missing path problem, which we turn to below.
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be estimated without further assumptions, but the following corollary provides easy-to-

compute bounds.

COROLLARY 1: Given the generic model (14) with qbo € ®, we can bound the total

subset distance to minimum loss AgL using
AsLs <AsL<AsLs+ES, (1)

where the unexplained loss term is given by
E=r'—r%  with £4=Tr%Wel). (32)

We note that the unexplained loss term 82 —the loss that cannot be accounted by the
subset of identified shocks— can be computed from the same set of sufficient statistics.
Specifically, AsL and EOS can be measured from the sufficient statistics Fg« and R%, and
the realized loss gives an estimate of £° = E(Y/WY ) computed under ¢".

Corollary 1 shows that we can use AgLgs to get bounds on AgLg, the subset DML for all
shocks. Intuitively, it does so by exploiting the (estimable) unexplained loss Eg. The lower
bound corresponds to the case where the unexplained loss is already minimal, that is could
not have been lowered with another reaction function, while the upper bound corresponds
to the case where the unexplained loss could have been entirely set to zero with a different

reaction function.

Computing the total subset DML from reduced form innovations It is possible to es-
timate AsL, the subset distance to minimum loss for all shocks, with one additional as-
sumption: that it is possible to compute oracle forecasts for Y. The key is to effectively
substitute structural shocks with innovations to the oracle forecast for Y, i.e. interchanging
structural shocks for reduced form shocks. To set this up, we briefly deviate from our time-
less perspective and append a subscript t to Y, i.e. Y; = (43,91, --.)". Next, we define the

innovation
UY=E,Y) —E, 1YY, where E,Y?=E(Y)|F), (33)

with F; the information set that includes all structural shocks are measurable up to time ¢

and the © superscript reminds that these are innovations under ¢°.
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COROLLARY 2: Given the generic model (14) with #° € ®, we have that the total subset
DML is given by

AsL = Tr(PO WRE(RIWRS) IREWTO) | (34)
where U0 is such that X9, = vOuY and Y= ]E(U?U(t)/).

Corollary 2 builds on Caravello et al. (2024) who use an invertible VAR to construct
the oracle innovations. The corollary shows that if a researcher is confident that she can
compute oracle forecasts for Y (from a VAR or some other method), then it is possible
to obtain an estimate for Ag/L using the variance of the innovations to the path forecast.
Intuitively, with an oracle forecast, the innovations U; span all structural shocks (including
the missing ones), and we can use the impulse responses to Wold innovations to compute
AgsL. While the innovations have no structural interpretation and are not uncorrelated (and
thus cannot be used to decompose AgL into shock-specific distances), they are sufficient
to compute the total distance to minimum loss. Of course, obtaining an oracle forecast is
not an innocuous task as it requires spanning the entire information set ;. In the context
of a VAR, this requires the VAR to be invertible, see Caravello et al. (2024).

4.3.2. Missing paths: A matrix completion problem

We can think of the missing paths problem as a matrix completion problem where the
data only provide enough variation to credibly identify a few columns or combinations of
columns of the matrix needed to compute policy counterfactuals— that is, the matrix R°.
This type of problem also appears in other strands of the macro literature, e.g. Auclert et al.
(2018) with the identification of the intertemporal MPC matrix.

The R° matrix completion problem is an active area of research in macro (McKay and
Wolf, 2023), and we briefly discuss broad strategies that can help in our policy evalua-
tion setting. The general strategy consists in reducing the dimension of R by imposing
restrictions on the matrix R, either high-level assumptions such as smoothness or explicit

restrictions coming from a structural model.

Functional approximation A first strategy, in the spirit our our semi-structural approach

to policy evaluation, is to reduce the matrix’s dimension by imposing high-level restrictions
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on the shape of the impulse responses to policy shocks; for instance imposing smoothness
in the effects of news shocks: while news shocks have different effects on Y, their effects
are likely to vary smoothly with the horizon of the news shock. Conceptually, this amounts
to using reduced rank or functional approximations for approximating R, e.g. with basis
functions, such as polynomials or B-splines (e.g., Barnichon and Brownlees, 2018, Inoue
and Rossi, 2021). We provide a sketch of this approach in the supplementary material
Barnichon and Mesters (2025, Section S6).

Structural approximation An alternative strategy is to complete the matrix R? with
structural models. In particular, Caravello et al. (2024) show how a structural model can
be used in a minimal way, i.e., using the structural model only to extrapolate the “missing”
policy paths from the identified policy shocks. Two particularly attractive features are that
the method does not require the model to explicitly specify (i) the structural shocks driving

the business cycle, and (ii) the policy block of the economy —the policy rule—.

4.4. Comparison under Subset Identification

Consider now a setting where we have observed the terms of two policy makers A and
B, and we want to compare their performance. Recall that a subset-evaluation is only able
to evaluate the policy path reaction function in specific directions of improvements, i.e.,
based on the policy path adjustments made possible by the identified policy shocks. For
the comparison to be relevant, we must first make sure that we are assessing the policy
path responses of A and B in the same “directions”. The following proposition provides a

simple-to-verify condition under which the comparison is on equal grounds.

PROPOSITION 3: For two policy makers A and B, let Ré » and Rg » denote their subset
policy path response maps. We have that if col(Ré o) = col(RE »)» then the subset-DMLs

(27) for any non-policy shock s are invariant to differences in the weights Qf and Qf .

The proposition follows straightforwardly from Lemma 4. With only one identified pol-
icy shock, the condition boils down to having the policy impulse response R s ;, being equal
across policy makers. Intuitively, when the subset identifications over two periods A and B

imply the same R ;, then the constraints on the optimization problem are the same for A
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and B, and the subset evaluation statistics will assess the same horizons of the policy path
response to shocks.’
With that important step taken care of, two different comparisons can then be conducted:

an overall comparison and a comparison by shock category.

Overall comparison

An overall comparison is based on the total subset DML Ag/L; the (subset) distance to
minimum loss for all the different shocks that affected the economy during a policy maker’s
term. For each policymaker we can compute bounds for AL from Corollary 1, or estimate
AgL using Corollary 2 and the additional assumption that credible oracle forecasts can be
constructed. We can then state that policy maker A performed better to B overall whenever
AsLA < AgLP.

Categorical comparison

Digging deeper, a researcher may be interested in comparing performances based on the
responses to any specific shock. Note that in the context of our generic model, all macro
shocks are equivalent from the policy maker’s perspective and no shock is more difficult to
respond to than another. In practice however, policy makers may face different issues when

faced with different types of shocks.® By conditioning a policy maker’s comparison on a

particular shock, we can “control” for these shock-specific practical issues.’

"When the impulse responses Rs,p do not lie in the same linear subspace, more work needs to be done, with
possible solutions including the use functional or structural models to extrapolate for the unidentified shocks, as
discussed above.

8For multiple reasons. First, certain shocks may be harder to detect in real time, for instance TFP shocks
as illustrated by the 90s surge in productivity that was initially invisible in the aggregate data (e.g., Bernanke,
2022). Second, certain shocks (e.g., oil shocks) confront policy makers with more difficult trade-offs, which can
expose them to political pressure (as the Fed in the 1970s, see Drechsel, 2024). Third, some shocks are less well
understood than others, think of a COVID shock, a tariff shock, or even a financial shock. In the 1930s, the Fed
had little understanding on the disastrous effects of bank failures on the money supply and the economy (Friedman
and Schwartz, 1963, Bernanke, 1983).

9Digging further, one may even want to condition on a specific shock s, say a news to a financial shock that
will realize in 4 quarters. This is difficult for two reasons. First, the macro data are typically not be rich enough to

separately identify such a finely-defined type of shock. Second, over a policy maker’s term, this particular shock



EVALUATING POLICY INSTITUTIONS 27

To that effect, we define =, as the sequence of shocks in category c, say financial, oil,
TFP, etc. The ideal statistics for comparing A and B are then the category-specific subset-
DMLs AgL., which are defined as the sum of the shock-specific subset DMLs Ag/L for
all shocks in category c.

Computing AsL, thus requires the identification of all shocks in category c. Otherwise,
as with the missing shocks problem, the construction of AL, is incomplete, and a compar-
ison of performance based on category ¢ may not be exhaustive if some shocks in category
c are missing. To remedy this limitation, different solutions are possible. A narrative ap-
proach can be used to ensure sure that no important shock in category c is missing, for
instance by using narrative accounts to make sure that all the key episodes of financial
distress are used to construct AgL..

Alternatively, one can take a more reduced-form approach by exploiting an additional as-
sumption like Corollary 2 —the ability to construct oracle forecasts—. Intuitively, from the
forecast revisions to the category-defining variable (say oil price inflation for the oil shock
category), we can compute a subset DML in which no structural shock in category c is left
out and compare how well policy makers responded to forecast revisions to a particular cat-
egory.]0 To set this up, let U7 = [E;C; — [E;_1 C; be the forecast innovation associated with
the variable Cy = (¢, ¢41,...) that defines the category. We can decompose the forecast
innovations for Y using U; = DUY + U, ©, where D is the projection coefficient and U ©

is a remainder.

COROLLARY 3: Given the generic model (14) with #° € ®, we have that the total subset
DML can be decomposed as AsL = AsL. + AsL_. with

AsLy, =Tr(T9QsT¢)  and  Agl_p, = Tr(T ¢ Qg¥ )

may not even have realized. While we write out generic model with an infinite set of news shocks at each horizon,
in practice policy makers face a much smaller set of shocks during their term.

10 Another reduced-form approach in the spirit of Angeletos et al. (2020) would be to compare policy makers
based on their reaction to a “dominant” shock in each category, that is to compare policy makers based on their
reaction to the reduced-form shock that explains (for each policy maker’s term) most of the business cycle variance

of a category-defining variable (say energy inflation).
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where Qs = WR%(RgWR%)’leW and ¥¢ and W~¢ are such that Xf; = Ueu< and
$5¢=Wew—, with £, = DE(USUS )D’ and ;¢ = E(U;“U; ).

The corollary shows how the total subset DML can be decomposed into the contribu-
tion of category ¢ (AsLy,) and a remainder term. With this we can compare A and B by
computing AsLy,.

There are trade-offs between using AgL. and AsLy,. On the one hand, AsL. has a
structural interpretation —it allows to compare how well each policy maker responded to
structural shocks in category c, for instance oil shocks—, but it can be difficult to measure
all structural shocks in a given category leaving open the possibility that missing shocks
distort the comparison. On the other hand, AsL;, only has a reduced form interpretation
—it allows to compare how well each policy maker responded to forecast revisions to
category c, for instance forecast revisions of oil inflation—, but it provides an exhaustive

comparison: there is no possibility that missing shocks in category c distort the comparison.

5. EVALUATING US MONETARY POLICY, 1879-2019

In this section, we apply our methodology to evaluate the conduct of monetary policy in
the US over the 1879-2019 period. We consider four distinct periods: (i) the classical Gold
Standard period 1879-1912 before the creation of the Federal Reserve, (ii) the early Fed
years 1913-1941, (ii1) the post World War II period 1954-1984 and (iv) the post-Volcker
period 1990-2019.!!

During the classical Gold Standard period, there was no active monetary policy, but this
period is instructive as a benchmark against which we can compare later Fed performances.
The early Fed period starts with the founding of the Fed in 1913 and ends with the US
entering the second World War. The post-war period starts in 1951 when the Fed regained

some independence following the Treasury—Fed Accord (e.g. Romer and Romer, 2004a).'?

”During the 1879-1912 Gold Standard period, when no formal policy institution existed, we take the three-
month Treasury rate as the “policy rate” that a hypothetical central bank could have controlled. For the 1913-1941
early Fed period, we use the Fed discount rate as the policy rate. To capture the policy stance during the post
WWII periods, we use the Fed funds rate as the policy rate.

2We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was financing

the war effort and lacked independence.
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The post Volcker period covers the Great Moderation period and ends immediately before
the COVID-19 pandemic.

We evaluate the Fed based on the loss function

H
L= SES 5 (e + M) (35)

h=0
where 7; denotes the inflation gap, u; the unemployment rate gap, 3 the discount factor
and A the preference parameter. We set the targets 7 = 2 and u* = 5, noting that the
specific values of constant targets have little impact on our results. The evaluation of the
reaction function is based on impulse responses to shocks —i.e., path deviations following
an innovation— and therefore does not depend on the constant terms in Y. Thus, as long

as targets are constant within each period, their values are irrelevant.'?

FIGURE 3.—INFLATION AND UNEMPLOYMENT, 1879-2019
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Note: Year-on-year inflation (GDP deflator) and the unemployment rate. The vertical lines highlight the different periods: Pre
Fed 1879-1912, Early Fed 1913-1941, Post WWII 1951-1984 and Post Volcker 1990-2019.

Our baseline choice for the loss function sets = A = 1, and we take H = 40 quarters,
a horizon large enough to ensure that the impulse responses have time to mean-revert.
The data are quarterly, inflation is measured as year-on-year inflation based on the output

deflator from Balke and Gordon (1986), and the unemployment rate before 1948 is taken

BIn the supplementary material, we report some robustness checks where we allow for a time-varying u*.

Results are very similar.
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from the NBER Macrohistory database over 1929-1948 and extended back to 1876 by
interpolating the annual series from Weir (1992) and Vernon (1994).

5.1. Policy evaluation with sufficient statistics

Our approach to policy evaluation requires the estimation of two sets of statistics: (1) the
impulse responses of the policy objectives and the policy instrument to policy shocks, and
(i1) the same impulse responses to non-policy shocks.

After detailing our shocks identifying assumptions and estimation methods, we present
the results of an overall policy evaluation of each period. Then, to uncover the drivers of
under-performance and directly evaluate the policy reaction function, we conduct shock-

specific policy assessments.

5.2. Shock identification
ldentification of policy shocks

We first discuss the identification of the policy shocks e¢s in each sub-period. When-
ever possible, we draw on the state of the art in the literature and identify one monetary
shock series per period. As we will see, these identified shocks generate similar policy path
perturbations in each period, implying that our subset-based policy evaluation will assess
policymakers in similar directions: evaluating the short end of the policy path response to
shocks.!*

For the Pre Fed Gold Standard period, there is no well established approach to identify
monetary shocks, and we propose a new approach that exploits a unique feature of the
Gold Standard. Under a Gold Standard, the monetary base depends on the amount of gold in
circulation, which can itself vary for exogenous reasons related to the random nature of gold
discoveries or development of new extraction techniques. As such, we use unanticipated
large gold mine discoveries (discoveries that led to gold rushes) and the date of peak mine
extraction as an instrument for movements in the monetary base. To the extent that the

timing of the discovery and peak mine extraction is unrelated to the state of the business

'“In the online appendix Section S3.1, we extend our results by identifying two monetary shock series that
generate different policy path perturbations in the short-to-medium term for both the post WWII and the post

Volcker periods. We obtain similar policy assessments.
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cycle, gold mine discovery will be a valid instrument, see the online appendix Section S4
for more details.

For the Early Fed period, we use the Friedman and Schwartz (1963) dates extended by
Romer and Romer (1989) as instruments to identify monetary policy shocks. We include
five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and 1941Q3— where movements in
money were “unusual given economic developments” (Romer and Romer, 1989). For the
Post World War II period we use the Romer and Romer (2004b) monetary shocks, and for
the Post Volcker period we use the high-frequency identification (HFI) approach, pioneered
by Kuttner (2001) and Giirkaynak et al. (2005), and we use surprises in fed funds futures
prices around FOMC announcement as proxies for monetary shocks, specifically surprises
to 3-months ahead fed funds futures (FF4).!

ldentification of non-policy shocks

We now discuss the identification of the non-policy shocks &g in each sub-period. As
financial shocks we use narratively identified bank panics. Each included panic was trig-
gered by either a run on a particular trust fund or by foreign developments. The dates for the
banking panics are taken from Reinhart and Rogoff (2009) and Romer and Romer (2017).
To capture the severity of the bank run, each non-zero entry is rescaled by the change in
the BAA-AAA spread at the time of the run, similar to the re-scaling of Bernanke et al.
(1997) and Romer and Romer (2017).! For government spending shocks we use the news
shocks to defense spending as constructed in Ramey and Zubairy (2018). As identify pro-
ductivity shocks,we use the TFP series of Basu et al. (2006) over 1947-2019. To identify
energy shocks, we extend the approach of Hamilton (1996) and Hamilton (2003) by iden-
tifying energy shocks as instances when energy price rises above its 3-year maximum or
falls below its 3-year minimum. Since coal was the primary US energy source until World
War II and oil only became the pre-dominant energy source after World War II, we mea-

sure energy price prices from the wholesale price index for fuel and lighting, available over

15 As another robustness check we use a set-identification approach —sign restrictions as in e.g., Uhlig (2005)—
for all four periods. The policy evaluation results are similar and are reported in the supplementary material.
16Since the time series for AAA yields only start in 1919, we backcasted AAA yields before 1919 with yields

on 10-year maturity government bonds from the Macro History database (Jorda et al., 2019).
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1890-2019. As measure of inflation expectations, we rely on the Livingston survey that
has been continuously run over 1946-2019, and includes a question about 8-months ahead
inflation expectations. Prior to World War II, there are no systematic inflation expectation
survey, so we instead rely on Cecchetti (1992)’s measure of 6-months ahead inflation ex-
pectations for the Early Fed period. To identify innovations to inflation expectations, we
proceed similarly to Leduc et al. (2007) and project inflation expectations on a set of con-
trols that include past values of inflation expectation, inflation, unemployment, lags of the
3-month and 10-year treasury rates. In addition, we also project on current and past values
of the other identified non-policy shocks: financial, government spending, energy price and
TFP. The idea is to capture movements in inflation expectations that cannot be explained by
the other shocks, i.e., that go above and beyond the typical effect of the non-policy shocks

on inflation expectations.

Estimation method

To estimate impulse responses and our policy performance statistics (DML and policy
path response adjustments), we rely on Bayesian structural vector autoregressive models
(SVAR). For each sub-sample, we estimated a quarterly VAR with 4 lags in the variables
(s, T, u,€5,p) where &g ; is the jth non-policy shock and es the policy shock. We order
the monetary shock proxy after unemployment and inflation (and before the federal funds
rate), imposing the additional restriction that monetary policy does not affect inflation and
unemployment within the period, following Romer and Romer (2004b). We estimate the
SVAR with Bayesian methods, which shrink the reduced form VAR coefficients using a
Minnesota style prior. The prior variance hyper-parameters follow the default settings dis-

).17

cussed in Canova and Ferroni (2025, Section 3.1.1)." " Since the shocks are entered directly

into the VAR, we compute the impulse-response functions using Cholesky identification.'®

For each draw the total subset distance to minimum loss A gL (with accompanying bounds)

”Speciﬁcally, we set 7 = 3 —controlling the overall tightness—, decay = 0.5 —controlling the prior tightness
on the lags greater than one—, A = 5 —sum-of-coefficient prior—, ;x = 2 —controlling the co-persistence prior—
. w = 2 —controlling the prior on the covariance matrix—.

18Specifically, for each draw, we collect the responses of (7, u) to &s,; for horizons 0,1,..., H in a (1 x 80)
vector F%, and the response of the policy rate p in the vector F%p. Similarly, the responses of (m,u,p) to €g

form a (1 x 80) matrix R?g and the response of the policy rate form the vector R%,p
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and the policy path response adjustments As©,, ; are computed as direct functions of the
impulse responses as stated in Proposition 2 and Corollaries 1-2. We report the median

across draws and the 68% confidence intervals.

Policy path perturbations

Figure 4 plots the estimated responses of the policy path to each monetary shock series.
The different policy shocks induce similar transitory perturbation to the short-end of the
policy path (the R-squared statistics of a regression of one path on another are high and
consistently above 0.65 for the first three periods), indicating that our policy evaluations
will assess how well the central bank used the short-end of the policy path to respond to
shocks in each period. For the Post Volcker period, the policy path perturbation is slightly
more protracted than in earlier periods, so in the online appendix we study the robustness
of our results by expanding the set of identified monetary shocks to capture both transitory
and more persistent policy perturbations over the Post WWII and Post-Volcker periods. We

obtained similar policy assessments.

FIGURE 4.—Policy path responses to identified monetary shocks
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Note: Shaded areas depict the 68% credible sets.

5.3. Overall evaluation

We first report the results of our overall policy evaluation, drawing on Proposition 2 and
Corollary 1 by bounding the total subset distance to minimum loss Ag.L. In addition, we
estimate Ag/L directly by using the innovations to the oracle forecasts, see Corollary 2.
To do so, we estimate the innovations from a VAR that has four lags and seven variables:
inflation, unemployment, the identified policy shock, energy inflation, labor productivity
growth, the BAA-AAA spread, and government spending (as share of potential output).

The first column of Table I reports the median estimate and 68% confidence intervals (in
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parentheses) for AL over the four periods. The bounds are reported inside squared brack-

ets.
TABLE I
EVALUATION US MONETARY PoLICY: 1879-2019
Panel (i) Distance to Minimum Loss (DML, Ag L)
Overall Shock specific
Bank panics G Energy ° TFP MP
Pre Fed 8.4 1.5 0.6 0.2 — — 1.5
1879—1912  (4.8,15.5) (0.3,3.5) (0.1,2.1) (0,0.6) (0.7,3.2)
[3,17]
Early Fed 97.4 27.7 6.6 1.6 27.9 — 18.5
191321941 (57,230) (11.5,67.4) (0.8,24.3) (0.1,8.6) (9.4,70.4) (8.8,37.9)
[66,110]
Post WWII 6.6 — 0.1 0.9 1.7 0.4 1.2
1951—1984 (3.8,12) (0,0.8) (0.1,3.5) (0.3,5.5) (0,2.3) (0.4,3.2)
[3,11]
Post Volcker 3.2 0.1 0.1 0.2 0 0.1 0.7
1990—2019 (1.4,7.2) (0,0.6) (0,0.4) (0,0.9) (0,0.2) (0,0.4) (0.3,1.9)
[1,6]
P o . . an(AS@p,S)
anel (ii) Percentage correction to policy path response (=—=—2727%)
lavg(©F 5)I
Shock specific
Bank panics G Energy ¢ TFP MP
Pre Fed —1.0 —0.9 —0.1 — — —
1879—-1912 (—4.2,0) (—3.1,0.1)  (—1.4,0.5)
Early Fed —2.3 —-1.3 0.5 2.0 — —
1913-1941 (—6.2,—1) (—4.4,-0.1) (=0.3,2.7)  (0.8,6.7)
Post WWII — —0.6 1.0 4.7 0. —
1951—-1984 (—4.9,2.5) (0,2.1) (1.9,17.1)  (—0.4,3.3)
Post Volcker —0.3 0.3 —0.3 0.1 —1.2 —
1990—-2019 (—1.3,0.5) (—0.8,1.7) (-2.8,3) (-1.6,1.9)  (-6,0.5)

Note: Panel (i) shows the median subset distance to minimum loss; total (A gL, first column) and shock-specific (AgLs)
together with 68% credible sets in parentheses with each row reporting estimates for a different period. In the first column, the
brackets report median estimates for the upper and lower bounds for A g L. Panel (ii) shows the median optimal correction to the
policy path reaction to each identified macro shock with 68% credible sets in parentheses. See main text for shocks definition and

identification.
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The Early Fed stands out as the worse performing regime with a much larger (subset)
distance to minimum loss than in any other period, while the Post Volcker period stands
out as the best performing one with the smallest distance to minimum loss. The Post WWII
period and Pre Fed periods are relatively similar in terms of overall performance with sim-
ilar distances to minimum loss. This indicates that (a) the Early Fed performed worse than
the passive Gold Standard regime, and (b) the post World War II Fed still had substantial
room for improvement, being only marginally superior to the Gold Standard.

This overall evaluation avoids the pitfalls of a naive approach based on the realized loss,
but it does not convey the economic reasons for these different performances: it is silent
about the shocks that caused sub-optimal policy performances or about possibilities for
improvements. More generally, while the DML measures the loss that a superior central
bank could have avoided, it does not directly assess the central bank reaction function: a
distance to minimum loss could be large, because of a poor reaction function or because
of large shocks or structural parameters that amplified the consequences of suboptimal
reactions.

To answer these questions, we will turn to policy evaluations by shock category. Specif-
ically, from Proposition 2 we will compute both the shock-specific DML AgLg and
AsO, s, the optimal adjustment to the policy path response to shock s. As we saw, these
statistics are the two sides of the same performance coin, and they will allow to separate the
roles of good policy (appropriate reaction function) and good luck (a stable environment

that limited the consequences of a sub-optimal reaction function).

5.4. Shock-specific evaluation

Our shock-specific evaluation considers five categories of non-policy shocks for each
of the four periods (whenever possible): financial shocks, government spending shocks,
energy price shocks, inflation expectations shocks, and TFP shocks. In addition, we will
report the contribution of monetary shocks to policy performance, i.e., when the monetary
authority itself destabilizes the economy with policy shocks.

Table I reports our results, grouping our shock-specific evaluation statistics (distance
to minimum loss and optimal percentage correction) by shock category. As discussed in

Section 4.4, we caution that category-specific comparisons of policy performance across
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periods (i.e., across rows) are only exhaustive when the identified shocks in a particular
category capture all (or most) of the shocks in that category. In the supplementary material,
we thus also show results based on using corollary 3 to construct AsLy, and compare the
Fed across periods from how well the institution responded to forecast revisions in each

category. The policy comparisons are similar.

Results

Panel (i) of Table I reports the median and 68% confidence intervals for the (subset)
distance to minimum loss for each shock s: AgLs. To understand the reasons for sub-
optimal performances and assess the reaction function directly, panel (ii) focuses on the
optimal adjustment to the policy path response to each shock s, and specifically reports

the first-year average correction to the policy path response for each broad shock type:
avg(AsOp.s)
|avg(05,s)|

how far off was the Fed to best responding to a particular shock type that it faced. In

. This “percentage correction” is a unitless summary measure that can convey

addition, we plot the original @27 s and adjusted policy paths responses @ggt in the figures
below. This provides a direct way to visualize the magnitude and dynamic profile of the
policy path correction, i.e., the magnitude and dynamic profile of the policy mistake.

We summarize our main results below and provide more discussion and robustness

checks in the online-appendix.

Improved policy in the Post Volcker period Our shock-specific evaluations confirm our
overall evaluation results: we estimate strong improvements in the conduct of monetary
policy in the last 30 years, i.e., roughly after Volcker’s dis-inflation program. In particular,
the policy path corrections are substantially smaller (and non-significant) than in the other
periods, with an average (absolute) percentage correction of 30 percent post Volcker but

above 100 percent in all other periods.'”

!9The only exception is the Post Volcker Fed’s response to TFP shocks which is non-significant but larger at
120 percent. The reason is mainly because the baseline response is close to zero, in line with Gali (1999) that
policy did not react to TFP shocks post 1985. That said, the welfare consequences are minimal (the TFP DML
is tiny at 0.1), also in line with Gali (1999)’s conclusion that TFP shocks account for little of business cycle

fluctuations.
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The conduct of policy did improve before Volcker however in one dimension: the vari-
ance of policy shocks went down substantially after WW II. In other words, since World
War II the Fed has not directly contributed to destabilizing the economy with policy shocks.
This can be seen from the DML for policy shocks, which is much smaller for the post World
War II than for the early Fed (see column “MP”). In other words, even though the reaction
function is not substantially superior in the post WWII period, erratic behavior in the con-
duct of policy was much improved after WWII, in contrast to the stop-and-go policies of
the 30s or the over-reaction of the early 20s (e.g., Friedman and Schwartz, 1963, Romer,
1992).

Responding to financial shocks Focusing on the reaction to financial shocks, we can
contrast the Post Volcker Fed with the Early Fed of the 1920s-1930s. Our results confirm
Bernanke’s promise to not repeat the mistakes of the past: the “poor” reaction function of
the early Fed led to massive welfare losses, while the “good” reaction function of the Post
Volcker Fed ensured little welfare losses coming from a sub-optimal reaction function.

To see this, we can first contrast the optimal policy path response adjustment for financial
shocks estimated for the Early Fed period with the policy path response adjustment for
the Post Volcker period. With 100 x %ggf’;l) = —230% (statistically significant) for the
Early Fed, the Fed reaction to banking panics was much too tight; not only was the response
too timid, it had the wrong sign (the adjustment being over —100%) and the policy path
adjustment flips the sign of the policy path response; a decline in the policy rate instead of
an increase.

To better appreciate this reaction function improvement, Figures 5 and 6 display the
impulse responses underlying our calculations, for the 1913-1941 estimates and for the
1990-2019 estimates. The top rows show the impulse responses of inflation, unemploy-
ment and the interest rate to a monetary policy shock —an adverse policy shock lowering
inflation and raising unemployment—, while the bottom rows show the responses of the
same variables to a financial shock —an adverse financial shock lowering inflation and
raising unemployment. Notice how, in the Early Fed period, the Fed raised the discount
rate in response to adverse financial shocks. Combined with the decline in inflation caused
by the financial shock, this means that the real policy rate increased substantially and mone-

tary policy was contractionary in the aftermaths of banking panics. The (substantial) policy
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path response adjustment corrects this sub-optimal reaction function and turns the table
on monetary policy by running an expansionary policy. After reaction adjustment (dashed
green line), the policy rate goes down substantially on impact, and the paths of inflation

and unemployment are consequently much more stable.

FIGURE 5.—EARLY FED, 1913-1941, REACTION TO FINANCIAL SHOCKS
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Note: The top (resp. bottom) row shows the median responses (thick line) of inflation, unemployment and the Fed’s discount
rate to a monetary policy shock (resp. financial shock). The dotted green lines show the adjusted impulse responses: T' + R9 75

The 95% and 67% credible sets are plotted as dark and light shaded areas, respectively.

Consider now the evaluation of the post Volcker Fed. The estimated policy adjustment is
much smaller and non significant, representing only a —30 percent correction to the orig-
inal policy path response, indicating that the post Volcker Fed period reacted much more

appropriately to financial shocks.?? As a result, while the 2007-2008 financial disruptions

20That said, a negative path adjustment indicates that the Fed should have lowered the fed funds rate more in
response to financial shocks (according to the posterior mean). This could indicate that the presence of the zero
lower bound may have limited somewhat the Fed’s ability to best react to the 2007-2008 financial crisis. In the
supplementary material Barnichon and Mesters (2025), we generalize our method to measuring performance in
a constrained optimization environment and impose a zero lower bound on interest rates. The optimal reaction

adjustment is then close to zero.
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were substantial, the corresponding estimated DML over the post-Volcker period is tiny
(0.1); two orders magnitude smaller than the DML for financial shocks for the Early Fed
(27.7). This result can also be seen in the impulse responses estimated for the Post Vol-
cker period (Figure 6). Following a financial shock, the policy rate is negative —monetary
policy is expansionary (black line, lower-right panel)—, and the policy path response ad-
justment (green line) is minor, leading to modest adjustments to the responses of inflation

and unemployment. This is the sign of good policy.

FIGURE 6.—P0OST VOLCKER FED, 1990-2019, REACTION TO FINANCIAL SHOCKS
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Note: The top (resp. bottom) row shows the median responses (thick line) of inflation, unemployment and the fed funds rate
to a monetary policy shock (resp. financial shock). The dotted green lines show the adjusted impulse responses: T'C 4+ RO7*. The
95% and 68% credible sets are plotted as dark and light shaded areas, respectively.

The early Fed vs the passive Gold Standard An interesting, and perhaps surprising,
finding is that the Early Fed performed worse than the passive Gold standard: Both the
DMLs and the policy path adjustments are larger for the Early Fed than for the Gold Stan-
dard. The total DML is about 10 times larger in the Early Fed period than in the Pre Fed
period. While this difference reflects the fact that the Early Fed faced the larger shocks of

the Great Depression, panel (i1) shows that the reaction function of the Early Fed is actually
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substantially worse across all shocks. The most striking difference is the reaction to bank-
ing panics with a correction of —230 percent for the Early Fed but “only” —100 percent for
the passive Gold Standard. Interestingly, this is consistent with narrative evidence that the
Early Fed was deeply influenced by the real bills doctrine and excessively worried about

speculations (e.g. Humphrey and Timberlake, 2019).

The Great Inflation US monetary policy during the 1970s has generally been consid-
ered poor (e.g., Romer and Romer, 2004a), in particular not responding more than one-to-
one with changes in inflation (Clarida et al., 2000) and violating the so-called Taylor prin-
ciple. However, beyond that Taylor principle, it has been difficult to quantify how “poor”
monetary policy had been.

Overall, we find that the Fed’s reaction function during the 60s-70s is on a par (i.e., “just
as bad”) with the reaction function of the early Fed, with policy path corrections of similar
magnitudes, though the nature of the underlying shocks is different. Post World War II, the
Fed reaction was too weak following all the different supply-type shocks that we identified:
energy price shocks, TFP shocks as well as inflation expectation shocks. In fact, the reac-
tion to inflation expectation shocks over the 60s-70s displays the largest deviation from
optimality over the entire 150 year of monetary history. The consequences of these sub-
optimal reactions were much smaller however, with DMLs an order of magnitude smaller
for the Post WWII period than for the Early Fed period.?!

To illustrate these sub-optimal reaction functions, Figure 7 plots the estimated impulse
responses for inflation expectation shocks. In response to an inflation expectation shock,
inflation rises progressively, but the policy rate does not respond, leading to negative real
interest rates and further increasing inflation. The (large) policy path correction restores
the Taylor principle: after correction, the policy rate rises strongly following an inflation
expectation shock (lower-right panel, Figure 7) and limits the rise in inflation (at the cost

of higher unemployment).

2 There are two possible reasons why a given suboptimal reaction function translates into larger losses, i.e.,
into larger distances to minimum loss: (i) the magnitudes of the shocks themselves were larger in the Early Fed
period, and/or (ii) the Early Fed economy was less resilient in the face of adverse disturbances than the post WWII

economy.
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FIGURE 7.—P0ST WWII FED, 1951-1984, REACTION TO 7€ SHOCKS
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Note: The top (resp. bottom) row shows the median responses (thick line) of inflation, unemployment and the fed funds rate
to a monetary policy shock (resp. inflation expectations shock). The dotted green lines show the adjusted impulse responses:
0 + RO7*. The 95% and 68% credible sets are plotted as dark and light shaded areas, respectively.

6. CONCLUSION

In this paper, we propose a semi-structural method to evaluate policy makers with mini-
mal assumptions on the underlying economic model. Specifically, for a large class of linear
forward looking macro models and quadratic loss functions, it is possible to measure the
distance to the optimal reaction function and distance to minimum loss from well known
and estimable sufficient statistics: the impulse responses to policy and non-policy shocks.

An important open question for US monetary policy going forward is why did large
and uniform improvements happen only in the last 30 years. A better understanding of the
functioning of the economy (Friedman and Schwartz, 1963), better and more timely data
(Romer, 1986, Orphanides, 2001), better forecasting (Dominguez et al., 1988) and better
causal inference methods (Romer and Romer, 1989) could all be part of the improvements
in policy over the last 30 years. Parsing out these different reasons is an important question
for future research.

Our proposed methodology could be applied to many other important evaluation ques-

tions; in the context of monetary policy (e.g., comparing central banks such as the Fed
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vs the ECB during the Great Recession), in the context of fiscal policy (e.g., comparing
the performance of US presidents, health policy (e.g., comparing governments’ policy re-
sponses to COVID), or climate change mitigation policy. We leave these questions for
future research.

Last, we note that our approach focuses on evaluating reaction functions given a set of
objectives, but it is silent about the policy objectives themselves. For instance, what set of
policy objectives should a policy institution target? And what long-run level to target? For
instance, what are the costs and benefits of a change in the inflation target? Developing
sufficient statistics methods to study these long-run questions would be a fruitful avenue

for future research.
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