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1. INTRODUCTION

How should we evaluate and compare the performance of policy institutions? How

should we evaluate and compare policy makers after their term in office? These ques-

tions are of central importance to the proper functioning of democratic and accountable

institutions, yet there is little consensus on a suitable method for evaluating and comparing

performance.

A naive approach would consist of measuring performance based on realized macroe-

conomic outcomes— that is, on the realized value of some loss function. For instance,

we could assess a central banker based on average inflation and unemployment outcomes

over her term. Unfortunately, that approach suffers from numerous confounding problems,

as many features of the economy —the economic environment— are outside policy mak-

ers’ control yet affect performance: (i) different policy makers may face different initial

conditions upon beginning their term (e.g., a central banker may inherit a strong or weak

economy from her predecessor), (ii) different policy makers may face different economic

disturbances (e.g., a central banker may experience a financial crisis or an energy price

shock that will affect her ability to stabilize inflation and unemployment), and (iii) differ-

ent policy makers may live in different economies (e.g., a steeper or flatter Phillips curve

will affect a central banker’s ability to control inflation). In sum, the economic environment

can confound performance.

So, what makes a policy institution good or bad? Our starting point is simple: policy

makers react to the state of the world by taking actions to minimize a loss function, i.e. they

use their policy instruments to achieve certain policy objectives. A policy maker’s reaction

to the state of the world can be expressed as a policy rule —a reaction function—, and a

policy maker is best performing, when her reaction function is “optimal”, i.e., delivers the

minimum loss possible given the environment. In that context, evaluating a policy maker

requires measuring the distance between the policy maker’s rule and the optimal rule, that

is measuring the distance to the minimum loss possible given the environment.

To characterize the minimum feasible loss in a given economic environment, one ap-

proach is to use a structural model fitted to data spanning the policy maker’s term, derive

the optimal rule and compute the associated minimum loss. A risk with this approach, how-

ever, is model misspecification: if the model is misspecified, evaluations may be inaccurate.
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In this paper, we propose a semi-structural method to evaluate policy makers with min-

imal assumptions about the underlying economic model. Specifically, for a large class of

linear forward looking macro models and quadratic loss functions, it is possible to measure

the distance to the optimal reaction function —and distance to minimum loss— from well

known and estimable sufficient statistics: the impulse responses to policy and non-policy

shocks.

To characterize the optimal policy rule without having to rely on a specific underlying

model, we exploit two new results. First, an identification result: knowledge of the optimal

reaction to structural shocks alone is sufficient to characterize the optimal policy rule—

that is, to construct a policy rule that minimizes the loss function given the environment.

Second, a sufficient statistics result: the optimal reaction to structural shocks can be char-

acterized from the impulse responses to policy and non-policy shocks.

Taken together, these results imply that the impulse responses to policy and non-policy

shocks are sufficient to construct policy evaluation statistics at the shock level: the distance

to the optimal policy response to a particular structural shock (say a financial shock, an oil

shock, etc.) and the distance to minimum loss for that particular shock. The total distance

to minimum loss —a measure of overall performance— can then be obtained by simply

summing the shock-specific distances to minimum loss.

An attractive feature of our constructive formulation of the total distance to minimum

loss is that it enables researchers to not only evaluate overall performance but also to un-

derstand the reasons behind suboptimal performances. By decomposing the total DML

into its shock-specific component, researchers can isolate which types of shocks were most

costly to overall performance and to identify directions for improvement.

In a dynamic setting, computing the total distance to minimum loss requires identifying

all policy and non-policy news shocks across all possible horizons. Since this data require-

ment is rarely met in practice, we show how subset statistics, which rely on only a subset

of shocks, can be used to evaluate policymakers, subject to two qualifications.

First, when a researcher cannot identify all shocks affecting a policymaker during her

term, the overall evaluation may not be exhaustive, as some shocks are missing. To address

this “missing shocks” problem, we propose two solutions: (i) we derive bounds on the total

distance to minimum loss (using the same set of sufficient statistics and without additional

assumptions), or (ii) we show how it is possible directly estimate the total DML from oracle
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forecast innovations instead of structural shocks. The latter approach, however, requires an

additional assumption —the ability to construct oracle forecasts.

Second, when a researcher cannot identify all types of policy shocks (for instance, for-

ward guidance shocks at all different horizons), the characterization of the optimal reaction

function is only “partial”, as some possible policy path responses are not considered. To

give a concrete example, say we only identify policy shocks that affect the short-end of

the policy path, then we can only explore the optimality of the short end of the policy path

response to shocks. This does not invalidate the policy evaluation, but this is a limitation to

keep in mind when interpreting the results.

We apply our methodology to study the performance of US monetary policy over the

past 150 years and revisit many important questions regarding the conduct of monetary

policy: (i) Did monetary policy improve since the time of the Great Depression? Is the

Great Moderation post-Volcker a sign of good policy or simply the outcome of good luck?

(e.g., Clarida et al., 2000, Galı et al., 2003, Galí and Gambetti, 2009)? (ii) While many

observers agree that monetary policy was superior during the 2007-2009 financial crisis

than during the 1929-1933 financial crisis (e.g., Wheelock et al., 2010, Almunia et al.,

2010), can we confirm and quantify this improvement? In other words, did Bernanke fulfill

his promise to Milton Friedman when he said that the Fed “won’t do it again”, i.e., won’t

repeat the mistakes of the Great Depression (Bernanke, 2002)? (iii) How does the post

World War II Fed and the de-anchoring of inflation expectations compare to de-anchoring

of inflation expectations in the interwar Fed period (Romer and Romer, 2013)? (iv) Finally,

did the founding of the Federal Reserve in 1913 lead to better macroeconomic outcomes

compared to the passive gold standard era (e.g., Bordo and Kydland, 1995)?

To assess monetary policy performance across historical periods, we construct and de-

compose the total DML into the separate contributions of six macro shocks: (i) financial

shocks, (ii) government spending shocks, (iii) energy price shocks, (iv) inflation expec-

tation shocks, (v) productivity shocks and (iv) monetary shocks, all identified using the

state-of-the-art in the empirical macro literature. We consider US monetary policy over

four distinct periods: (a) 1879-1912 covering the Gold standard period until the founding

of the Federal Reserve, (b) 1913-1941 covering the early Fed years to the US entering

World War II, (c) 1954-1984 covering the post World War II period until the beginning of

the Great Moderation, and (d) 1990-2019 covering the Great Moderation period, the finan-
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cial crisis and up to the COVID crisis. For the Gold Standard period, the identification of

monetary shocks is less developed, and we propose a new identification strategy based on

large gold mine discoveries.

Given a loss function that places equal weight on inflation and unemployment, our main

results are as follows: (i) we estimate large and uniform improvements in the conduct of

monetary policy, but only in the last 30 years, (ii) we cannot reject that the Fed’s reaction to

recent financial shocks (notably the 2007-2008 financial crisis) was appropriate, in contrast

to the “highly” sub-optimal reaction of the Fed to the financial shocks of the Great Depres-

sion, (iii) the Fed’s reaction function during the 1960s-1970s is almost as sub-optimal as

the reaction function of the early Fed, though the nature of the shocks is different, and (iv)

the founding of the Fed initially led to worse performance than the passive Gold Standard.

In particular, faced with financial or government spending shocks, the Fed fared worse than

the passive Gold Standard.

Related literature An early contribution is Fair (1978) who highlights the distortions

stemming from different initial conditions and economic environments. His solution was

to adopt optimal control methods to compare policymakers through the lens of a fully spec-

ified model. Modern versions of this approach include Galı et al. (2003), Gali and Gertler

(2007), Blanchard and Galí (2007). Unfortunately, specifying the correct model for the pol-

icy rule or the non-policy block is a difficult task (e.g., Svensson, 2003, Mishkin, 2010). A

less structural approach has studied monetary performance through the lens of estimated

policy rules —requiring only the specification of a policy rule— (e.g. Taylor, 1999, Clarida

et al., 2000, Orphanides, 2003, Coibion and Gorodnichenko, 2011). In particular, a num-

ber of studies compared the Fed in the pre- and post-Volcker periods by assessing whether

the Taylor principle was satisfied. However, beyond the Taylor principle, that approach can

say little about the optimality of reaction functions, and thus can only provide a coarse

evaluation of reaction functions.

In the context of fiscal policy, Blinder and Watson (2016) improve on the naive ap-

proach of policy evaluation —measuring performance based on unconditional realized

outcomes— by projecting out specific shocks, i.e., by trying to control for good (or bad)

luck. In contrast, our approach projects on the space spanned by specific non-policy shocks

and studies performance in that space.
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Closer to our work, the literature has proposed reduced-form methods to study policy rule

counterfactuals (e.g., Sims and Zha, 2006, Bernanke et al., 1997, Leeper and Zha, 2003),

though these approaches are not fully robust to the Lucas critique. Instead, our approach

builds on recent work showing that robustness to the Lucas critique is possible in a large

class of macroeconomic models (McKay and Wolf, 2023, Caravello et al., 2024): When the

coefficients of the non-policy block are independent of the coefficients of the policy block,

it is possible to reproduce any policy rule counterfactual with an appropriate combina-

tion of policy news shocks at different horizons. Our work exploits a little-studied class of

policy rule counterfactuals —counterfactual reactions to non-policy shocks—, which have

appealing properties: (i) the class is sufficient to characterize the optimal reaction function,

(ii) the class allows to split the optimal policy problem into computationally simple sep-

arate problems, allowing us to evaluate policymakers under subset identification, and (iii)

each sub-problem has an economic interpretation; allowing us to understand the sources

of sub-optimal policy decisions, for instance the types of shocks that policymakers could

have handled better. This last property allows us to relate to and quantify a large literature

on previous policy misses, notably the seminal narrative studies of US monetary policy

(Friedman and Schwartz, 1963, Meltzer, 2009).

Lastly, our paper relates to the sufficient statistics approach for macro policy proposed

in Barnichon and Mesters (2023). Different from our focus on reaction function evaluation,

Barnichon and Mesters (2023) focus on the time t optimal policy problem —how to set

the policy path today given the state of the economy—, instead of the unconditional policy

problem that we consider here —how to set up the policy rule to minimize the uncondi-

tional loss—. Barnichon and Mesters (2023) show that the characterization of the optimal

targeting policy rule can be reduced to the estimation of two sufficient statistics (i) the im-

pulse responses of the policy objectives to policy shocks, and (ii) oracle forecasts for the

policy objectives conditional on some baseline policy rule. This paper uses a different set of

sufficient statistics—policy and non-policy shocks—, providing an economic interpretation

for the sources of optimization failures, as discussed above.

2. ILLUSTRATIVE EXAMPLE

Before formally describing our general framework, we first illustrate how it is possible

to evaluate and compare policy makers without having access to the underlying economic
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model nor the policy rule. To illustrate the method, we take a baseline New Keynesian (NK)

model, which allows to highlight the main mechanisms of our approach.

The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model are given by

πt =Etπt+1 + κxt + σξξt , (1)

xt =Etxt+1 −
1

σ
(it −Etπt+1) , (2)

with πt the inflation gap, xt the output gap, it the nominal interest rate set by the central

bank and σξξt an iid cost-push shock with mean zero and variance σ2ξ . The parameters are

collected in θ = (κ,σ,σξ)
′. We can think of θ as capturing the economic “environment”;

the slopes of the (PC) and (IS) curves and the standard deviation of the non-policy shock

(here, the cost-push shock).

The policy maker sets the interest rate following the rule

it = ϕππt + σϵϵt , (3)

where σϵϵt is an iid policy shock with mean zero and variance σ2ϵ , and ϕ = (ϕπ, σϵ) is a

vector of policy parameters, or the reaction function. For ϕπ > 1 we can solve the model

and express the endogenous variables Yt = (πt, xt)
′ and it as functions of the exogenous

shocks St = (ξt, ϵt)
′, i.e.

Yt =ΘSt and it =ΘpSt , (4)

where Θ= (Γ,R) and Θp = (Γp,Rp) capture the impulse responses of the non-policy vari-

ables (Y ) and the policy variable (i) to the cost-push shock (Γ,Γp) and the monetary policy

shock (R,Rp). We emphasize that each impulse response depends on the environment θ

and the reaction function ϕ.1

1Formally, we have

R= σε

 −κ/σ
1+κϕπ/σ

−1/σ
1+κϕπ/σ

 , Γ= σξ

 1
1+κϕπ/σ
−ϕπ/σ

1+κϕπ/σ

 , Rp = σε
1

1 + κϕπ/σ
, Γp = σξ

ϕπ

1 + κϕπ/σ
,
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Evaluating policy makers requires taking a stance on a performance metric. To that ef-

fect, we consider the loss function

L= EY ′
t Yt , which using (4) becomes L=Tr(Θ′Θ) = Γ′Γ+R′R , (5)

where Tr() denotes the trace operator. An “optimal reaction function” is then defined as

any ϕ that minimizes L(ϕ; θ) given the underlying structure of the economy, i.e., given

equations (1)-(3), and expression (5) shows that minimizing the unconditional loss L is

equivalent to minimizing the sum-of-squares of the impulse responses of shocks hitting the

economy, here Γ and R. An optimal policy is thus a policy rule that best mutes the effects

of shocks on average.

In this example the optimal reaction function is unique and given by ϕopt = (ϕoptπ , σoptϵ )′ =

(κσ,0)′ (e.g. Galí, 2015). First, exogenous policy changes are not optimal, and an optimal

policy features no policy shocks (σoptϵ = 0). Second, the optimal reaction coefficient ϕoptπ

is the coefficient that minimizes the effects of cost-push shocks, i.e., that best mutes Γ. The

minimum loss is then given by

Lopt = Γopt′Γopt, (6)

with Γopt being equal to Γ evaluated at (ϕopt, θ), i.e. the minimal effect of cost-push shocks

that a policy maker can achieve given the environment θ.

A naive approach to policy evaluation

Consider a policy maker with reaction function ϕ0 during her term and associated loss

L0. How should we evaluate that policy maker?

A naive approach would consist in comparing realized losses. Specifically, (i) compute

the average loss during a policy maker’s term, which provides an estimate of the loss L0,

and (ii) evaluate and rank policy makers based on that estimate. Policy makers with higher

average loss would then be deemed less performant. Unfortunately, the parameter vector θ

that describes the economic environment acts as a confounder by influencing the impulse

responses to shocks and thus the loss, see (4)-(5).

To illustrate how the economic environment can distort such naive policy evaluation,

consider two policy makers —Red and Blue— following the same rule ϕ0π = 1.5 but oper-

ating in different environments: one with a steeper Phillips curve (κred = 0.5) and the other
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FIGURE 1.—LOSS BASED POLICY EVALUATION
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σ = 6, σϵ = 0 and σξ = 1. The optimal rule ϕopt

π is indicated by the filled dots. The empty dots indicated the policy maker’s
policy rule ϕ0

π .

with a flatter Phillips curve (κblue = 0.2). Figure 1 plots the loss function as a function of

the rule parameter ϕπ for these two policy makers. The empty dot marks their actual policy

rule (here ϕ0π = 1.5 for both Red and Blue).

Since the loss for Red is lower than under Blue, a naive approach to policy evaluation

would conclude that Red is a better policy maker than Blue. However, it’s the exact oppo-

site: in this example, Red is further away from the optimal reaction function than Blue. The

filled dots mark the optimal reaction function ϕopt for each policy maker, and the distance

to the optimal reaction function ϕ0 − ϕopt —the horizontal distance between the filled dot

and the empty dot—, is larger for Red than for Blue. In other words, Red performs less

well than Blue. The reason for these different conclusions is the underlying environment:

in the steep Phillips curve world of Red, it is easier to achieve a lower loss.

To properly compare Red and Blue, we must thus take into account the environment,

i.e., measure the distance to the minimum feasible loss given the environment; the distance

∆L in Figure 1. To do so, one possible approach consists in specifying a structural model,

fit that model to the data spanning the policy maker’s term and then compute the optimal
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reaction coefficient ϕopt and the associated minimum feasible loss Lopt from that model.

In this example this amounts to specifying the Phillips and IS curves and estimating the as-

sociated parameters θ. A risk with this approach however is model mis-specification: if the

model does not capture the full complexity of the underlying environment, the policy as-

sessment can be compromised. In this paper, we propose a different approach, an approach

that requires minimal assumptions on the underlying economic model.

A sufficient statistics approach to policy evaluation

A class of policy rule counter-factuals To outline our approach we start from a simple

idea: instead of minimizing the loss with respect to the reaction coefficients in front of

endogenous variables (here ϕπ) as is common in the literature (Galí, 2015), we propose to

optimize with respect to the reaction coefficients in front of structural shocks. While this

class of rule counterfactuals could seem of little direct interest, they have two important,

yet overlooked, properties: (i) the effects of counterfactual reaction to structural shocks

can be computed with minimal assumptions on the underlying model, depending only on

estimable sufficient statistics, and (ii) the optimal reaction to structural shocks is sufficient

to fully characterize the optimal policy rule and to compute the minimum attainable loss.

To see that, denote by ϕ0 =
(
ϕ0π, σ

0
ϵ

)
the policy maker’s reaction function and consider

the policy rule counter-factual

it = ϕ0ππt + σ0ϵ (τξξt + τϵϵt)︸ ︷︷ ︸
Reaction adjustment

+σ0ϵ ϵt , (7)

where τ = (τξ, τϵ) is a vector of responses to structural shocks. Unlike the original reaction

function (3), the modified reaction function (7) fixes the reaction coefficients ϕ0 at their

baseline value.

Following the same steps that led to (4), we can solve the model under that modified

policy rule and express the endogenous variables as a function of exogenous shocks to get

Yt = (Θ0 +R0τ)St and it = (Θ0
p +R0

pτ)St (8)

where the 0 superscript indicates that the impulse response is computed under (ϕ0, θ), such

that Θ0 = (Γ0,R0). From expression (8), we can see how the rule adjustment τ modifies
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the impulse response to shocks. Take for instance Γ0, the effect of the cost-push shock.

A reaction adjustment τξ changes the effect from Γ0 to Γ0 +R0τξ , which means that the

“old” impulse responses Γ0 and R0 are all we need to compute the effects of the policy

rule counter-factual (7). A similar result holds for how τϵ modifies the impulse response

R0. Intuitively, a change τ in the reaction to an exogenous variable (here xi or ϵ) has

equilibrium effects that can be measured by the causal effects of policy shocks, i.e. R0.

Optimal reaction adjustment From (8), we can use Γ0 and R0 to search for the optimal

reaction coefficient to structural shocks. To that effect, consider an auxiliary loss function

that takes τ as its argument while holding ϕ0 fixed:

L(τ) = E(Y ′
t Yt) with Yt = (Θ0 +R0τ)St

=Tr[(Θ0 +R0τ)
′
(Θ0 +R0τ)]

Solving for the optimum reaction adjustment τ∗ = (τ∗ξ , τ
∗
ϵ ) = argminτ L(τ), we get2

τ∗ξ =−(R0′R0)−1R0′Γ0 and τ∗ϵ =−1 . (9)

and

L(τ∗) = Lopt . (10)

In other words, optimizing with respect to τ is sufficient to fully characterize the optimal

reaction function, and the auxiliary loss function has the same minimum as the original

loss function L. The statistic τ∗ is the optimal reaction adjustment:3 (i) τ∗ξ modifies the

policy rule coefficient for non-policy shocks ξt in order to reach Γopt; the minimal effect

2To show L(τ∗) = Lopt, plug in τ∗ into the auxiliary loss function to obtain

L(τ∗) = Γ0′(I −R0(R0′R0)−1R0′)Γ0

=
σ2
ξ

1 + κ2
= Lopt ,

using the expressions for Γ0 and R0 defined in footnote 1.
3Note how τ∗ξ is the coefficient of a regression of Γ0 on −R0; a regression in impulse response space. Intu-

itively, Γ0 (the impulse response to a cost-push shock) captures what the policy maker did on average to counteract

cost-push shocks with his rule ϕ0, while R0 (the impulse response to a monetary shock) captures what the policy

maker could have done to counteract cost-push shocks —how reacting to ξt by τ could have better stabilized the
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of cost-push shock that a policy maker can achieve given the environment θ,4 and (ii) τ∗ϵ
cancels monetary mistakes by setting policy shocks back to zero with τ∗ϵ =−1.

While the optimal reaction adjustment allows to fully characterize the optimal reaction

function, it does not have a transparent economic interpretation. Instead, we can compute

the corresponding optimal policy response adjustment ∆Θp =Θ0
p −Θopt

p , which captures

how the systematic policy responses to shocks should be adjusted. Using (8) we have that

∆Θp =−R0
pτ

∗ , (11)

as Θopt
p = Θ0

p +R0
pτ

∗. The columns of ∆Θp capture the optimal correction to the policy

response to each type of shock (ξ or ϵ), and they allow to assess the “quality” of the policy

maker’s response to each type of shock, with larger corrections indicating a poorer reaction

function.

Distance to minimum loss With the optimal reaction adjustment τ∗ in hand, it is then

straightforward to get expressions for (i) ∆L the distance to minimum loss, and (ii) decom-

pose ∆L into the contribution of each structural shock. We have

∆L=L0 −Lopt =∆Lξ +∆Lϵ , (12)

where

∆Lξ = Γ0′R0
(
R0′R0

)−1
R0′Γ0 and ∆Lϵ =R0′R0 . (13)

Intuitively, each optimal reaction adjustment focuses on a different structural shock, so that

each adjustment assesses a separate dimension of policy performance.

Decomposition (12) is at the core of our approach to policy evaluation. From (12)-(13),

we can construct the total distance to minimum loss ∆L and assess overall performance,

while expression (12) allows to decompose that total distance into separate shock-specific

components, revealing which shocks were most costly to overall performance.

effect of cost-push shocks by transforming Γ0 into Γ0 + τR0, see (8)—. A regression on R0 on Γ0 precisely

finds the τ that minimizes the sum-of-squares of that adjusted impulse response, i.e., that best cancels out the

effects of non-policy shock. At an optimal policy rule, Γ0 and R0 should be orthogonal.
4In this example, we have τ∗ξ =

σξ

σϵ

−κσ+ϕπ

(1+κ2)2
.
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On the duality of policy performance evaluation Note how we derived two complemen-

tary statistics to measure performance: (i) the optimal policy response adjustment (∆Θp),

and (ii) the distance to minimum loss (∆L). The two statistics play complementary roles,

each capturing a different side of the same “performance coin”. The optimal policy re-

sponse adjustment measures the extent of good policy —it directly assesses the reaction

function—, while the distance to minimum loss (∆L) captures what we ultimately care

about —the “welfare” consequences of good/bad policy. Unlike ∆Θp however, the dis-

tance to minimum loss is not fully under control of the policy maker, as the same gap

∆Θp could imply larger or smaller welfare losses depending on the underlying structural

parameters and shocks variance. This is the luck aspect of policy performance.

In sum, this example illustrates how we can evaluate and compare policy makers without

specifying an explicit reaction function nor a specific structural macro model. Instead, the

only requirement is to estimate two sufficient statistics: the impulse responses Γ and R
over a policy maker’s term. The next sections show that these findings continue to hold for

general linear forward looking macro models.

3. ENVIRONMENT

We describe a general stationary macro environment for a policy maker (or institution)

who faces an infinite horizon economy. To describe the economy we distinguish between

two types of observable variables: non-policy variables yt ∈ RMy and the policy instru-

ment pt ∈ R. The policy instrument is different from the other variables as it is under the

direct control of the policy maker. To describe the economy we use a sequence space rep-

resentation (Auclert et al., 2021). Let Y = (y′0, y
′
1, . . .)

′ denote the paths for the non-policy

variables and P= (p0, p1, . . .)
′ denote the path for the policy variable p. For instance, one

can think of P as the path of the policy rate for a central bank, while Y would typically

comprise the paths of the inflation and unemployment gaps.5

5Generalizing our approach to multiple policy instruments (pt ∈ RMp ) is a straightforward extension, but

focusing on only one policy instrument clarifies the exposition, as the policy choice reduces to setting a vector:

the policy path.
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Working under perfect foresight, we consider a generic model for the paths of the en-

dogenous variables

AyyY−AypP= ByξΞ

AppP−ApyY= BpξΞ+Bpϵϵ
, (14)

where ϵ= (ϵ0, ϵ1, . . .)
′ and Ξ= (ξ′0, ξ

′
1, · · · )′ are sequences of policy and non-policy shocks,

respectively. The first equation captures the non-policy block of the economy, while the

second equation captures the policy rule.

We normalize all elements of Ξ and ϵ to have mean zero and unit variance. Also, we

assume that they are serially and mutually uncorrelated, consistent with the common def-

inition of structural shocks (e.g. Bernanke, 1986, Ramey, 2016). The structural maps A..

and B.. are conformable and may depend on underlying structural parameters. We split

them in two parts: the economic environment θ = {Ayy,Ayp,Byξ} which the policy maker

takes as given, and the reaction function ϕ= {App,Apy,Bpξ,Bpϵ}, which is under the con-

trol of the policy maker and we assume that Bpϵ is invertible. Further, we impose that ϕ

and θ are independent in the sense that ∂θi/∂ϕj = 0 for all entries i, j, i.e. changing the

reaction function does not directly change the coefficients θ and all effects of ϕ on Y go

via the policy path P.

We denote by Φ the set of all reaction functions ϕ for which the model (14) implies a

unique equilibrium, that is all ϕ for which

A=

(
Ayy Ayp

Apy App

)
is invertible.

Many structural models found in the literature can be written in the form of (14); prominent

examples include New Keynesian models and heterogeneous agents models.

For any ϕ ∈ Φ we can write the expected path of the non-policy variables as a linear

function of the policy and non-policy shocks.

LEMMA 1: Given the generic model (14) with ϕ ∈Φ, we have

Y =Θ(ϕ, θ)S and P=Θp(ϕ, θ)S , (15)

where S = (Ξ′,ϵ′)′ with conforming partition of the impulse response maps Θ(ϕ, θ) =

(Γ(ϕ, θ),R(ϕ, θ)) and Θp(ϕ, θ) = (Γp(ϕ, θ),Rp(ϕ, θ)).
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Explicit characterizations for the impulse response maps are given in the appendix. Note

the similarity between (15) and (4), as the illustrative static NK model is a special case

with only contemporaneous shocks. Lemma 1 implies that the identification of the impulse

responses requires observing part of the future shocks in Ξ and ϵ. That is, news shocks at

the different horizons are needed for identification. The supplementary material spells out

this point out in more detail.

Evaluation criteria

We consider a researcher who is interested in evaluating a policymaker based on their

success at stabilizing some subset of the non-policy variables yt around certain desired

targets y∗ for some time periods t = 0,1,2, . . .. For ease of notation we set the targets to

zero, as we can think of yt as being defined as deviations from the desired targets.

We measure performance using the loss function

L(ϕ; θ) = EY′WY , (16)

where W is a positive semi-definite weighting matrix, which selects and weights the spe-

cific variables and horizons that are part of the researcher’s evaluation criteria. The loss (16)

is the researcher’s evaluation criterion for scoring policymaker performance —an input into

our framework—.

Using Lemma 1, we can rewrite the loss function as

L(ϕ; θ) = Tr(Θ(ϕ, θ)′WΘ(ϕ, θ)) . (17)

As in the simple example, minimizing the unconditional loss L is thus equivalent to min-

imizing the (weighted) sum-of-squares of the impulse responses to the different shocks

affecting the economy. Intuitively, minimizing this loss can be seen as a timeless definition

of optimal policy —representing the loss of a policymaker appointed at the beginning of

time and in place forever—, and an optimal policy is a policy rule that best dampens the ef-

fects of shocks. This interpretation will be useful in getting some intuition for our sufficient

statistics formula.

The actions of the policymaker are summarized by the reaction function ϕ. We define a

reaction function to be optimal if it minimizes the loss function (16). Formally, the set of
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optimal reaction functions is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
L(ϕ; θ) s.t. (14)

}
. (18)

The definition implies that we only consider optimal reaction functions that lie in Φ; the

set of reaction functions that imply a unique equilibrium. We denote by ϕopt an arbitrary

reaction function in Φopt.

4. POLICY EVALUATION WITH SUFFICIENT STATISTICS

In this section, we show how we can evaluate a policymaker with a reaction function ϕ0

by measuring (i) the distance to minimum loss (∆L) and (ii) the optimal adjustment of the

policy path response to shocks (∆Θp):

∆L= L0 −Lopt and ∆Θp =Θ0
p −Θopt

p , (19)

where Θ0
p = Θp(ϕ

0, θ) and L0 = L(ϕ0; θ) are evaluated under the policymaker’s reaction

function and Lopt = L(ϕopt; θ) and Θopt
p = Θp(ϕ

opt, θ) are evaluated under an optimal

reaction function.

4.1. Optimal reaction adjustment and distance to minimum loss

Following the same steps as the simple example of Section 2, we propose to characterize

the optimal rule by considering a thought experiment in which we adjust the policymaker’s

reaction coefficients to the structural shocks. Specifically, consider the auxiliary reaction

function

A0
ppP−A0

pyY = B0
pξΞ+B0

pϵϵ+B0
pϵT S , (20)

where T is a map of reaction adjustments to the shocks S. Each element of T corresponds

to a different counterfactual rule, whereby we modify how different horizons of the policy

path respond to one specific macro shock. The following lemma establishes how a rule

adjustment T affects the equilibrium allocation.
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LEMMA 2: Consider the generic model (14) with ϕ0 ∈ Φ and the modified policy rule

(20). We have

Y = (Θ0 +R0T )S and P= (Θ0
p +R0

pT )S , (21)

where Θ0 ≡Θ(ϕ0, θ), Θ0
p =Θp(ϕ

0, θ), R0 ≡R(ϕ0, θ) and R0
p ≡Rp(ϕ

0, θ).

The reaction adjustment T = (Tξ,Tϵ) affects the equilibrium by changing the impulse

responses to non-policy shocks from Γ0 to Γ0 +R0Tξ and the impulse responses to policy

shocks from R0 to R0+R0Tϵ , so that knowledge of the impulse responses Θ0 = (Γ0,R0)

is sufficient to compute the policy rule counterfactuals embedded in the T adjustments.

We now define the auxiliary loss function

L(T ;ϕ0, θ) = EY′WY with Y = (Θ0 +R0T )S

=Tr[(Θ0 +R0T )′W(Θ0 +R0T )] , (22)

which allows to trace out how changing the policymaker’s reaction to any individual shock

affects the loss. The optimal reaction adjustment is the adjustment that minimizes the aux-

iliary loss function, i.e. T ∗ = argminT L(T ;ϕ0, θ) with properties summarized as follows.

LEMMA 3: Given the generic model (14) with ϕ0 ∈Φ, we have

T ∗ =−(R0′WR0)−1R0′WΘ0 and L(T ∗;ϕ0, θ) = Lopt . (23)

Lemma 3 states that the auxiliary loss function, when evaluated at T ∗, attains the min-

imum loss. This is our identification result: knowledge of the optimal reaction to the dif-

ferent structural shocks is sufficient to fully characterize the optimal policy rule and to

compute the minimum attainable loss Lopt. In addition, the lemma shows that the optimal

rule adjustments can be computed using only the impulse responses Θ0 = (Γ0,R0).

Using this Lemma, we can derive our main result.

PROPOSITION 1: Given the generic model (14) with ϕ0 ∈Φ, we have

1. The distance to minimum loss (DML) statistic is given by

∆L=
∑
s∈N

∆Ls , with ∆Ls =Θ0′
s WR0(R0′WR0)−1R0′WΘ0

s , (24)
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where N denotes an index set for the different shocks.

2. The optimal adjustment to the policy path response to shock s ∈N is given by

∆Θp,s =R0
p(R0′WR0)−1R0′WΘ0

s . (25)

Proposition 1 shows how our two policy evaluation statistics —the distance to minimum

loss (∆L) and the optimal adjustment to the policy path response to shocks (∆Θp,s)— can

be computed using only the impulse responses under ϕ0.

The first evaluation statistic —the distance to minimum loss— conveys how much lower

the loss could have been if the policymaker had performed optimally. It is a measure of

overall performance. Then, we can decompose the total distance ∆L into shock-specific

distances to minimum loss ∆Ls: the distance to minimum loss conditional on one type of

shock only. It is the loss that could have been avoided by responding optimally to the shock

s. This decomposition allows to isolate the types of shocks that were most costly to overall

performance. The second evaluation statistic —the optimal adjustment to the policy path

response to shocks— allows us to assess the reaction function directly: ∆Θp,s measures

how the policymaker should have adjusted her policy path response to each specific macro

shock s.

4.2. Optimal reaction adjustment under subset identification

Proposition 1 requires the identification of all elements of Θ0 = (Γ0,R0) and R0
p, which

in turn requires identifying all the different types of policy and non-policy shocks that can

affect the economy at all horizons. In practice, this is a stringent requirement. For that

reason, we now discuss how to evaluate policymakers with subset-shock identification, i.e.,

when the researcher can only identify a subset of the policy shocks ϵ = (ϵ0, ϵ1, . . .)
′ and

non-policy shocks Ξ= (ξ′0, ξ
′
1, . . .)

′.

We denote the subsets of identified shocks by ϵS = Ωϵϵ and ΞS = ΩξΞ, where each Ω

defines which linear combinations of shocks at different horizons are identified. Indeed,

a credible identification strategy isolates exogenous variation in a variable of interest, but

this variation can be a combination of news shocks at different horizons (including con-

temporaneous shocks). As an example, consider the narratively identified military defense

spending news shocks of Ramey and Zubairy (2018); it is unlikely that this shock pertains
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to a unique news shock at a specific horizon h, but it is reasonable to assume that the shock

is a linear combination of the different news shocks to military spending in Ξ. A similar

reasoning holds for the identified policy shocks, which are likely a combination of con-

temporaneous and news shocks at different horizons. We let SS = (Ξ′
S ,ϵ

′
S)

′ be the vector

of these identified shocks. The corresponding subsets of identified impulse responses are

Θ0
S =

(
Γ0
S ,R0

S
)

and Θ0
S,p =

(
Γ0
S,p,R0

S,p

)
.

In this scenario, without further assumptions, we cannot compute the entire distance to

minimum loss ∆L, nor the entire map of policy path adjustments ∆Θp. However, we can

construct subset policy evaluation statistics. To make this precise, we proceed similarly to

Section 4.1 and consider the augmented policy rule

A0
ppP−A0

pyY = B0
pξΞ+B0

pϵϵ+B0
pϵΩ

′
ϵTSSS , (26)

where TS is a map of reaction adjustments to the identified shocks SS .

Compared to (20), note how the policy rule adjustment is restricted in two ways. First,

TS only adjusts the policy responses to the shocks that are identified —S becomes SS—.

Second, TS only adjusts the policy path responses as permitted by the weighting matrix

Ωϵ —B0
pϵ becomes B0

pϵΩ
′
ϵ—. In Section 4.3 we come back to these restrictions, as they are

important to understand how to conduct policy evaluations using subset statistics.

As in the full identification case, we can define the policy evaluation statistics. The subset

optimal reaction adjustment is defined as T ∗
S = argminTS L(TS ;ϕ

0, θ), with L(TS ;ϕ0, θ)∝
Tr[(Θ0

S +R0
STS)′W(Θ0

S +R0
STS)] similarly to (22). The corresponding subset distance to

minimum loss is defined as ∆SLS = L0 − L(T ∗
S ;ϕ

0, θ), which is the distance to minimum

loss achievable by (i) adjusting the policy response to the subset of identified shocks and (ii)

using only the policy path perturbations implied by the identified policy shocks. Similarly,

the subset optimal path adjustments are given by ∆SΘS,p = Θ0
S,p − Θopt

S,p with Θ0
S,p =

(Γ0
S,p,R0

S,p) and Θopt
S,p =Θ0

S,p +R0
S,pT ∗

S .

PROPOSITION 2: Given the generic model (14) with ϕ0 ∈Φ, we have

1. The subset distance to minimum loss (DML) statistic is given by

∆SLS =
∑
s∈NS

∆SLs with ∆SLs =Θ0′
s WR0

S(R0′
SWR0

S)
−1R0′

SWΘ0
s ,

(27)
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where NS is an index set for the identified shocks.

2. The subset optimal adjustment to the policy path response to shock s is given by

∆SΘp,s =R0
S,p(R0′

SWR0
S)

−1R0′
SWΘ0

s . (28)

Proposition 2 parallels Proposition 1 in the case of subset shock identification; estab-

lishing how we can compute the “subset” policy evaluation statistics from the impulse

responses to a subset of identified shocks.

4.3. Evaluation under Subset Identification

With Proposition 2 in hand, a researcher can evaluate policy makers based on the subset

evaluation statistics, assessing performance from ∆SLS and shock-specific performance

from ∆SLs and ∆SΘp,s. However, it is important to understand how subset identification

affects the computation of the minimum feasible loss and thereby how one should interpret

the subset evaluation statistics. To that effect, the following lemma helps to clarify the

discussion.

LEMMA 4: The optimization problem minT L(T ;ϕ0, θ) given (20) is equivalent to the

unconstrained optimization problem

min
∆Θp

Tr
[
Θ′WΘ

]
with Θ=Θ0 +R0R0−1

p ∆Θp . (29)

The subset optimization problem minTS L(TS ;ϕ0, θ) given (26) is equivalent to the con-

strained optimization problem

min
∆ΘS,p

Tr[ΘS
′WΘS ] with ΘS =Θ0

S +R0R0−1

p ∆ΘS,p (30)

s.t. ∆ΘS,p ∈ col(R0
S,p) ,

where col(R0
S,p) denotes the column space of R0

S,p.

The first part of Lemma 4 states that the loss minimization with respect to T can be

equivalently reformulated as a loss minimization problem with respect to ∆Θp, the vector

of optimal adjustments to the policy path responses to shocks. Intuitively, characterizing

the optimal rule coefficients in front of shocks is equivalent to searching for the best policy



EVALUATING POLICY INSTITUTIONS 21

path responses to shocks. The second part states a similar result in the subset identification

case. However, the subset optimization problem (30) differs from (29) in two important

ways that will affect the interpretation of the evaluation statistics ∆SLS and ∆SΘS,p.

First, only the effects of the identified shocks (ΘS ) are included in the definition of the

loss function in (30), so that the constructive formulation of the total DML —the DML

for all shocks— is incomplete, being only based on the subset of shocks that could be

identified. Thus, while ∆SLS will still provide a summary measure of performance, it may

not be an exhaustive measure of performance, as some shocks are missing and ∆SLS ≤
∆SL where ∆SL =

∑
s∈N ∆SLs is the total distance to minimum loss, the distance for

all shocks. We will call this the “missing shocks” problem.

Second, with a limited set of policy shocks, the subset optimization is “partial” in that

not all possible counterfactual policy paths are considered when searching for the opti-

mum. We call this the “missing path” problem, and it is best understood by contrasting

the optimization problems (29) and (30) in Lemma 4: when we only identify a subset of

the policy shocks, the optimization problem is a constrained optimization problem, in that

the policy path response adjustments are constrained to lie in the span of R0
S,p —the re-

sponses of the policy path to the identified policy shocks—. Intuitively, the policy path

response adjustment can only be a linear combination of the columns of R0
S,p, as these are

the only policy path perturbations whose effects on the economy can be identified given

the available subset of policy shocks.

A simple example helps make this policy path restriction more concrete. Figure 2 shows

the impulse responses of the policy instrument to two hypothetical policy shocks that a

researcher has identified. The first policy shock affects the policy path in the short term

(R1,p), and the second shock affects the policy path in the medium term (R2,p). The subset

optimal policy path response adjustment ∆ΘS,p implied by these two shocks can only be

a linear combination of R1,p and R2,p and will thus only explore the consequences of

changing the short-to-medium end of the policy path response to shocks. This “missing

paths” problem does not invalidate the policy evaluation, but this is a limitation to keep in

mind when interpreting the results.

In the rest of this section, we will propose approaches for “filling” these “missing shocks”

and “missing paths”.
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FIGURE 2.—Illustration of a subset path perturbation
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Note: Left column: Response of the policy path P to two hypothetical policy shocks: in blue (top row) or in red (bottom row).
Right column: Response of the policy path P to a hypothetical macro shock. The response is either the baseline response under
ϕ0 (“Baseline ”: Θ0

p, black line) or after a reaction adjustment τ1 or τ2 (“Perturbed”: Θ0
p + τiRi,p for i= 1,2, dashed lines).

4.3.1. Missing shocks

Bounds on the total subset DML While the subset statistics of Proposition 2 only allow

to compute the subset DML for the shocks that could be identified (the distance ∆SLS ),

it is possible to derive bounds for the total subset DML ∆SL —the subset DML for all

shocks— with no additional assumptions. Tight bounds imply that the missing shock prob-

lem is not severe (and the policy evaluation is close to exhaustive), whereas loose bounds

imply that we might be missing a lot of relevant shocks.

To set this up consider the augmented rule A0
ppP−A0

pyY = B0
pξΞ+B0

pϵϵ+B0
pϵΩϵT̃SS,

which is broader than the rule adjustment (26), since it adjusts the response to all shocks

S, and not just the shocks SS .6 With this we can define the total subset DML ∆SL =

L0−L(T̃ ∗
S ;ϕ

0, θ) which is the distance to the minimum loss defined by optimally respond-

ing to all shocks (in the directions allowed by the identified policy shocks). ∆SL cannot

6Note that the directions of the response adjustment however remain restricted by Ωϵ, i.e., by the identified

policy shocks. This is the missing path problem, which we turn to below.
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be estimated without further assumptions, but the following corollary provides easy-to-

compute bounds.

COROLLARY 1: Given the generic model (14) with ϕ0 ∈ Φ, we can bound the total

subset distance to minimum loss ∆SL using

∆SLS ≤∆SL≤∆SLS + E0
S , (31)

where the unexplained loss term is given by

E0
S = L0 −L0

S with L0
S =Tr(Θ0′

SWΘ0
S) . (32)

We note that the unexplained loss term E0
S —the loss that cannot be accounted by the

subset of identified shocks— can be computed from the same set of sufficient statistics.

Specifically, ∆SL and L0
S can be measured from the sufficient statistics Γ0

S and R0
S , and

the realized loss gives an estimate of L0 = E(Y′WY) computed under ϕ0.

Corollary 1 shows that we can use ∆SLS to get bounds on ∆SLS , the subset DML for all

shocks. Intuitively, it does so by exploiting the (estimable) unexplained loss E0
S . The lower

bound corresponds to the case where the unexplained loss is already minimal, that is could

not have been lowered with another reaction function, while the upper bound corresponds

to the case where the unexplained loss could have been entirely set to zero with a different

reaction function.

Computing the total subset DML from reduced form innovations It is possible to es-

timate ∆SL, the subset distance to minimum loss for all shocks, with one additional as-

sumption: that it is possible to compute oracle forecasts for Y. The key is to effectively

substitute structural shocks with innovations to the oracle forecast for Y, i.e. interchanging

structural shocks for reduced form shocks. To set this up, we briefly deviate from our time-

less perspective and append a subscript t to Y, i.e. Yt = (y′t, y
′
t+1, . . .)

′. Next, we define the

innovation

U0
t = EtY

0
t −Et−1Y

0
t , where EtY

0
t = E(Y0

t |Ft) , (33)

with Ft the information set that includes all structural shocks are measurable up to time t

and the 0 superscript reminds that these are innovations under ϕ0.
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COROLLARY 2: Given the generic model (14) with ϕ0 ∈Φ, we have that the total subset

DML is given by

∆SL=Tr(Ψ0′WR0
S(R0′

SWR0
S)

−1R0′
SWΨ0) , (34)

where Ψ0 is such that Σ0
U =Ψ0Ψ0′ and Σ0

U = E(U0
tU

0′
t ).

Corollary 2 builds on Caravello et al. (2024) who use an invertible VAR to construct

the oracle innovations. The corollary shows that if a researcher is confident that she can

compute oracle forecasts for Y (from a VAR or some other method), then it is possible

to obtain an estimate for ∆SL using the variance of the innovations to the path forecast.

Intuitively, with an oracle forecast, the innovations Ut span all structural shocks (including

the missing ones), and we can use the impulse responses to Wold innovations to compute

∆SL. While the innovations have no structural interpretation and are not uncorrelated (and

thus cannot be used to decompose ∆SL into shock-specific distances), they are sufficient

to compute the total distance to minimum loss. Of course, obtaining an oracle forecast is

not an innocuous task as it requires spanning the entire information set Ft. In the context

of a VAR, this requires the VAR to be invertible, see Caravello et al. (2024).

4.3.2. Missing paths: A matrix completion problem

We can think of the missing paths problem as a matrix completion problem where the

data only provide enough variation to credibly identify a few columns or combinations of

columns of the matrix needed to compute policy counterfactuals— that is, the matrix R0.

This type of problem also appears in other strands of the macro literature, e.g. Auclert et al.

(2018) with the identification of the intertemporal MPC matrix.

The R0 matrix completion problem is an active area of research in macro (McKay and

Wolf, 2023), and we briefly discuss broad strategies that can help in our policy evalua-

tion setting. The general strategy consists in reducing the dimension of R0 by imposing

restrictions on the matrix R0, either high-level assumptions such as smoothness or explicit

restrictions coming from a structural model.

Functional approximation A first strategy, in the spirit our our semi-structural approach

to policy evaluation, is to reduce the matrix’s dimension by imposing high-level restrictions
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on the shape of the impulse responses to policy shocks; for instance imposing smoothness

in the effects of news shocks: while news shocks have different effects on Y, their effects

are likely to vary smoothly with the horizon of the news shock. Conceptually, this amounts

to using reduced rank or functional approximations for approximating R0, e.g. with basis

functions, such as polynomials or B-splines (e.g., Barnichon and Brownlees, 2018, Inoue

and Rossi, 2021). We provide a sketch of this approach in the supplementary material

Barnichon and Mesters (2025, Section S6).

Structural approximation An alternative strategy is to complete the matrix R0 with

structural models. In particular, Caravello et al. (2024) show how a structural model can

be used in a minimal way, i.e., using the structural model only to extrapolate the “missing”

policy paths from the identified policy shocks. Two particularly attractive features are that

the method does not require the model to explicitly specify (i) the structural shocks driving

the business cycle, and (ii) the policy block of the economy —the policy rule—.

4.4. Comparison under Subset Identification

Consider now a setting where we have observed the terms of two policy makers A and

B, and we want to compare their performance. Recall that a subset-evaluation is only able

to evaluate the policy path reaction function in specific directions of improvements, i.e.,

based on the policy path adjustments made possible by the identified policy shocks. For

the comparison to be relevant, we must first make sure that we are assessing the policy

path responses of A and B in the same “directions”. The following proposition provides a

simple-to-verify condition under which the comparison is on equal grounds.

PROPOSITION 3: For two policy makers A and B, let RA
S,p and RB

S,p denote their subset

policy path response maps. We have that if col(RA
S,p) = col(RB

S,p), then the subset-DMLs

(27) for any non-policy shock s are invariant to differences in the weights ΩA
ϵ and ΩB

ϵ .

The proposition follows straightforwardly from Lemma 4. With only one identified pol-

icy shock, the condition boils down to having the policy impulse response RS,p being equal

across policy makers. Intuitively, when the subset identifications over two periods A and B

imply the same RS,p, then the constraints on the optimization problem are the same for A
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and B, and the subset evaluation statistics will assess the same horizons of the policy path

response to shocks.7

With that important step taken care of, two different comparisons can then be conducted:

an overall comparison and a comparison by shock category.

Overall comparison

An overall comparison is based on the total subset DML ∆SL; the (subset) distance to

minimum loss for all the different shocks that affected the economy during a policy maker’s

term. For each policymaker we can compute bounds for ∆SL from Corollary 1, or estimate

∆SL using Corollary 2 and the additional assumption that credible oracle forecasts can be

constructed. We can then state that policy maker A performed better to B overall whenever

∆SLA <∆SLB .

Categorical comparison

Digging deeper, a researcher may be interested in comparing performances based on the

responses to any specific shock. Note that in the context of our generic model, all macro

shocks are equivalent from the policy maker’s perspective and no shock is more difficult to

respond to than another. In practice however, policy makers may face different issues when

faced with different types of shocks.8 By conditioning a policy maker’s comparison on a

particular shock, we can “control” for these shock-specific practical issues.9

7When the impulse responses RS,p do not lie in the same linear subspace, more work needs to be done, with

possible solutions including the use functional or structural models to extrapolate for the unidentified shocks, as

discussed above.
8For multiple reasons. First, certain shocks may be harder to detect in real time, for instance TFP shocks

as illustrated by the 90s surge in productivity that was initially invisible in the aggregate data (e.g., Bernanke,

2022). Second, certain shocks (e.g., oil shocks) confront policy makers with more difficult trade-offs, which can

expose them to political pressure (as the Fed in the 1970s, see Drechsel, 2024). Third, some shocks are less well

understood than others, think of a COVID shock, a tariff shock, or even a financial shock. In the 1930s, the Fed

had little understanding on the disastrous effects of bank failures on the money supply and the economy (Friedman

and Schwartz, 1963, Bernanke, 1983).
9Digging further, one may even want to condition on a specific shock s, say a news to a financial shock that

will realize in 4 quarters. This is difficult for two reasons. First, the macro data are typically not be rich enough to

separately identify such a finely-defined type of shock. Second, over a policy maker’s term, this particular shock
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To that effect, we define Ξc as the sequence of shocks in category c, say financial, oil,

TFP, etc. The ideal statistics for comparing A and B are then the category-specific subset-

DMLs ∆SLc, which are defined as the sum of the shock-specific subset DMLs ∆SLs for

all shocks in category c.

Computing ∆SLc thus requires the identification of all shocks in category c. Otherwise,

as with the missing shocks problem, the construction of ∆SLc is incomplete, and a compar-

ison of performance based on category c may not be exhaustive if some shocks in category

c are missing. To remedy this limitation, different solutions are possible. A narrative ap-

proach can be used to ensure sure that no important shock in category c is missing, for

instance by using narrative accounts to make sure that all the key episodes of financial

distress are used to construct ∆SLc.

Alternatively, one can take a more reduced-form approach by exploiting an additional as-

sumption like Corollary 2 —the ability to construct oracle forecasts—. Intuitively, from the

forecast revisions to the category-defining variable (say oil price inflation for the oil shock

category), we can compute a subset DML in which no structural shock in category c is left

out and compare how well policy makers responded to forecast revisions to a particular cat-

egory.10 To set this up, let Uc
t = EtCt−Et−1Ct be the forecast innovation associated with

the variable Ct = (ct, ct+1, . . .)
′ that defines the category. We can decompose the forecast

innovations for Y using Ut =DUc
t +U−c

t , where D is the projection coefficient and U−c
t

is a remainder.

COROLLARY 3: Given the generic model (14) with ϕ0 ∈Φ, we have that the total subset

DML can be decomposed as ∆SL=∆SLc +∆SL−c with

∆SLUc =Tr(Ψc′QSΨ
c) and ∆SL−Uc =Tr(Ψ−c′QSΨ

−c)

may not even have realized. While we write out generic model with an infinite set of news shocks at each horizon,

in practice policy makers face a much smaller set of shocks during their term.
10Another reduced-form approach in the spirit of Angeletos et al. (2020) would be to compare policy makers

based on their reaction to a “dominant” shock in each category, that is to compare policy makers based on their

reaction to the reduced-form shock that explains (for each policy maker’s term) most of the business cycle variance

of a category-defining variable (say energy inflation).
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where QS =WR0
S(R0′

SWR0
S)

−1R0′
SW and Ψc and Ψ−c are such that Σc

U = ΨcΨc′ and

Σ−c
U =Ψ−cΨ−c′ , with Σc

U =DE(Uc
tU

c′
t )D

′ and Σ−c
U = E(U−c

t U−c′

t ).

The corollary shows how the total subset DML can be decomposed into the contribu-

tion of category c (∆SLUc) and a remainder term. With this we can compare A and B by

computing ∆SLUc .

There are trade-offs between using ∆SLc and ∆SLUc . On the one hand, ∆SLc has a

structural interpretation —it allows to compare how well each policy maker responded to

structural shocks in category c, for instance oil shocks—, but it can be difficult to measure

all structural shocks in a given category leaving open the possibility that missing shocks

distort the comparison. On the other hand, ∆SLUc only has a reduced form interpretation

—it allows to compare how well each policy maker responded to forecast revisions to

category c, for instance forecast revisions of oil inflation—, but it provides an exhaustive

comparison: there is no possibility that missing shocks in category c distort the comparison.

5. EVALUATING US MONETARY POLICY, 1879-2019

In this section, we apply our methodology to evaluate the conduct of monetary policy in

the US over the 1879-2019 period. We consider four distinct periods: (i) the classical Gold

Standard period 1879-1912 before the creation of the Federal Reserve, (ii) the early Fed

years 1913-1941, (iii) the post World War II period 1954-1984 and (iv) the post-Volcker

period 1990-2019.11

During the classical Gold Standard period, there was no active monetary policy, but this

period is instructive as a benchmark against which we can compare later Fed performances.

The early Fed period starts with the founding of the Fed in 1913 and ends with the US

entering the second World War. The post-war period starts in 1951 when the Fed regained

some independence following the Treasury–Fed Accord (e.g. Romer and Romer, 2004a).12

11During the 1879-1912 Gold Standard period, when no formal policy institution existed, we take the three-

month Treasury rate as the “policy rate” that a hypothetical central bank could have controlled. For the 1913-1941

early Fed period, we use the Fed discount rate as the policy rate. To capture the policy stance during the post

WWII periods, we use the Fed funds rate as the policy rate.
12We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was financing

the war effort and lacked independence.
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The post Volcker period covers the Great Moderation period and ends immediately before

the COVID-19 pandemic.

We evaluate the Fed based on the loss function

L=
1

2
E

H∑
h=0

βh(π2t+h + λu2t+h) , (35)

where πt denotes the inflation gap, ut the unemployment rate gap, β the discount factor

and λ the preference parameter. We set the targets π∗ = 2 and u∗ = 5, noting that the

specific values of constant targets have little impact on our results. The evaluation of the

reaction function is based on impulse responses to shocks —i.e., path deviations following

an innovation— and therefore does not depend on the constant terms in Y. Thus, as long

as targets are constant within each period, their values are irrelevant.13

FIGURE 3.—INFLATION AND UNEMPLOYMENT, 1879–2019
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Note: Year-on-year inflation (GDP deflator) and the unemployment rate. The vertical lines highlight the different periods: Pre
Fed 1879-1912, Early Fed 1913-1941, Post WWII 1951-1984 and Post Volcker 1990-2019.

Our baseline choice for the loss function sets β = λ= 1, and we take H = 40 quarters,

a horizon large enough to ensure that the impulse responses have time to mean-revert.

The data are quarterly, inflation is measured as year-on-year inflation based on the output

deflator from Balke and Gordon (1986), and the unemployment rate before 1948 is taken

13In the supplementary material, we report some robustness checks where we allow for a time-varying u∗.

Results are very similar.
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from the NBER Macrohistory database over 1929-1948 and extended back to 1876 by

interpolating the annual series from Weir (1992) and Vernon (1994).

5.1. Policy evaluation with sufficient statistics

Our approach to policy evaluation requires the estimation of two sets of statistics: (i) the

impulse responses of the policy objectives and the policy instrument to policy shocks, and

(ii) the same impulse responses to non-policy shocks.

After detailing our shocks identifying assumptions and estimation methods, we present

the results of an overall policy evaluation of each period. Then, to uncover the drivers of

under-performance and directly evaluate the policy reaction function, we conduct shock-

specific policy assessments.

5.2. Shock identification

Identification of policy shocks

We first discuss the identification of the policy shocks ϵS in each sub-period. When-

ever possible, we draw on the state of the art in the literature and identify one monetary

shock series per period. As we will see, these identified shocks generate similar policy path

perturbations in each period, implying that our subset-based policy evaluation will assess

policymakers in similar directions: evaluating the short end of the policy path response to

shocks.14

For the Pre Fed Gold Standard period, there is no well established approach to identify

monetary shocks, and we propose a new approach that exploits a unique feature of the

Gold Standard. Under a Gold Standard, the monetary base depends on the amount of gold in

circulation, which can itself vary for exogenous reasons related to the random nature of gold

discoveries or development of new extraction techniques. As such, we use unanticipated

large gold mine discoveries (discoveries that led to gold rushes) and the date of peak mine

extraction as an instrument for movements in the monetary base. To the extent that the

timing of the discovery and peak mine extraction is unrelated to the state of the business

14In the online appendix Section S3.1, we extend our results by identifying two monetary shock series that

generate different policy path perturbations in the short-to-medium term for both the post WWII and the post

Volcker periods. We obtain similar policy assessments.
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cycle, gold mine discovery will be a valid instrument, see the online appendix Section S4

for more details.

For the Early Fed period, we use the Friedman and Schwartz (1963) dates extended by

Romer and Romer (1989) as instruments to identify monetary policy shocks. We include

five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and 1941Q3— where movements in

money were “unusual given economic developments” (Romer and Romer, 1989). For the

Post World War II period we use the Romer and Romer (2004b) monetary shocks, and for

the Post Volcker period we use the high-frequency identification (HFI) approach, pioneered

by Kuttner (2001) and Gürkaynak et al. (2005), and we use surprises in fed funds futures

prices around FOMC announcement as proxies for monetary shocks, specifically surprises

to 3-months ahead fed funds futures (FF4).15

Identification of non-policy shocks

We now discuss the identification of the non-policy shocks ξS in each sub-period. As

financial shocks we use narratively identified bank panics. Each included panic was trig-

gered by either a run on a particular trust fund or by foreign developments. The dates for the

banking panics are taken from Reinhart and Rogoff (2009) and Romer and Romer (2017).

To capture the severity of the bank run, each non-zero entry is rescaled by the change in

the BAA-AAA spread at the time of the run, similar to the re-scaling of Bernanke et al.

(1997) and Romer and Romer (2017).16 For government spending shocks we use the news

shocks to defense spending as constructed in Ramey and Zubairy (2018). As identify pro-

ductivity shocks,we use the TFP series of Basu et al. (2006) over 1947-2019. To identify

energy shocks, we extend the approach of Hamilton (1996) and Hamilton (2003) by iden-

tifying energy shocks as instances when energy price rises above its 3-year maximum or

falls below its 3-year minimum. Since coal was the primary US energy source until World

War II and oil only became the pre-dominant energy source after World War II, we mea-

sure energy price prices from the wholesale price index for fuel and lighting, available over

15As another robustness check we use a set-identification approach —sign restrictions as in e.g., Uhlig (2005)—

for all four periods. The policy evaluation results are similar and are reported in the supplementary material.
16Since the time series for AAA yields only start in 1919, we backcasted AAA yields before 1919 with yields

on 10-year maturity government bonds from the Macro History database (Jordà et al., 2019).
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1890-2019. As measure of inflation expectations, we rely on the Livingston survey that

has been continuously run over 1946-2019, and includes a question about 8-months ahead

inflation expectations. Prior to World War II, there are no systematic inflation expectation

survey, so we instead rely on Cecchetti (1992)’s measure of 6-months ahead inflation ex-

pectations for the Early Fed period. To identify innovations to inflation expectations, we

proceed similarly to Leduc et al. (2007) and project inflation expectations on a set of con-

trols that include past values of inflation expectation, inflation, unemployment, lags of the

3-month and 10-year treasury rates. In addition, we also project on current and past values

of the other identified non-policy shocks: financial, government spending, energy price and

TFP. The idea is to capture movements in inflation expectations that cannot be explained by

the other shocks, i.e., that go above and beyond the typical effect of the non-policy shocks

on inflation expectations.

Estimation method

To estimate impulse responses and our policy performance statistics (DML and policy

path response adjustments), we rely on Bayesian structural vector autoregressive models

(SVAR). For each sub-sample, we estimated a quarterly VAR with 4 lags in the variables

(ξS,j , π, u, ϵS , p)
′ where ξS,j is the jth non-policy shock and ϵS the policy shock. We order

the monetary shock proxy after unemployment and inflation (and before the federal funds

rate), imposing the additional restriction that monetary policy does not affect inflation and

unemployment within the period, following Romer and Romer (2004b). We estimate the

SVAR with Bayesian methods, which shrink the reduced form VAR coefficients using a

Minnesota style prior. The prior variance hyper-parameters follow the default settings dis-

cussed in Canova and Ferroni (2025, Section 3.1.1).17 Since the shocks are entered directly

into the VAR, we compute the impulse-response functions using Cholesky identification.18

For each draw the total subset distance to minimum loss ∆SL (with accompanying bounds)

17Specifically, we set τ = 3 —controlling the overall tightness—, decay = 0.5 —controlling the prior tightness

on the lags greater than one—, λ= 5 —sum-of-coefficient prior—, µ= 2 —controlling the co-persistence prior—

. ω = 2 —controlling the prior on the covariance matrix—.
18Specifically, for each draw, we collect the responses of (π,u) to ξS,j for horizons 0,1, ...,H in a (1× 80)

vector Γ0
S , and the response of the policy rate p in the vector Γ0

S,p. Similarly, the responses of (π,u, p) to ϵS

form a (1× 80) matrix R0
S and the response of the policy rate form the vector R0

S,p.
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and the policy path response adjustments ∆SΘp,s are computed as direct functions of the

impulse responses as stated in Proposition 2 and Corollaries 1-2. We report the median

across draws and the 68% confidence intervals.

Policy path perturbations

Figure 4 plots the estimated responses of the policy path to each monetary shock series.

The different policy shocks induce similar transitory perturbation to the short-end of the

policy path (the R-squared statistics of a regression of one path on another are high and

consistently above 0.65 for the first three periods), indicating that our policy evaluations

will assess how well the central bank used the short-end of the policy path to respond to

shocks in each period. For the Post Volcker period, the policy path perturbation is slightly

more protracted than in earlier periods, so in the online appendix we study the robustness

of our results by expanding the set of identified monetary shocks to capture both transitory

and more persistent policy perturbations over the Post WWII and Post-Volcker periods. We

obtained similar policy assessments.

FIGURE 4.—Policy path responses to identified monetary shocks
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5.3. Overall evaluation

We first report the results of our overall policy evaluation, drawing on Proposition 2 and

Corollary 1 by bounding the total subset distance to minimum loss ∆SL. In addition, we

estimate ∆SL directly by using the innovations to the oracle forecasts, see Corollary 2.

To do so, we estimate the innovations from a VAR that has four lags and seven variables:

inflation, unemployment, the identified policy shock, energy inflation, labor productivity

growth, the BAA-AAA spread, and government spending (as share of potential output).

The first column of Table I reports the median estimate and 68% confidence intervals (in
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parentheses) for ∆SL over the four periods. The bounds are reported inside squared brack-

ets.

TABLE I

EVALUATION US MONETARY POLICY: 1879-2019

Panel (i) Distance to Minimum Loss (DML, ∆SL)

Overall Shock specific

Bank panics G Energy πe TFP MP

Pre Fed
1879−1912

8.4
(4.8,15.5)

[3,17]

1.5
(0.3,3.5)

0.6
(0.1,2.1)

0.2
(0,0.6)

— — 1.5
(0.7,3.2)

Early Fed
1913−1941

97.4
(57,230)

[66,110]

27.7
(11.5,67.4)

6.6
(0.8,24.3)

1.6
(0.1,8.6)

27.9
(9.4,70.4)

— 18.5
(8.8,37.9)

Post WWII
1951−1984

6.6
(3.8,12)

[3,11]

— 0.1
(0,0.8)

0.9
(0.1,3.5)

1.7
(0.3,5.5)

0.4
(0,2.3)

1.2
(0.4,3.2)

Post Volcker
1990−2019

3.2
(1.4,7.2)

[1,6]

0.1
(0,0.6)

0.1
(0,0.4)

0.2
(0,0.9)

0
(0,0.2)

0.1
(0,0.4)

0.7
(0.3,1.9)

Panel (ii) Percentage correction to policy path response (avg(∆SΘp,s)
|avg(Θ0

p,s)|
)

Shock specific

Bank panics G Energy πe TFP MP

Pre Fed
1879−1912

−1.0
(−4.2,0)

−0.9
(−3.1,0.1)

−0.1
(−1.4,0.5)

— — —

Early Fed
1913−1941

−2.3
(−6.2,−1)

−1.3
(−4.4,−0.1)

0.5
(−0.3,2.7)

2.0
(0.8,6.7)

— —

Post WWII
1951−1984

— −0.6
(−4.9,2.5)

1.0
(0,2.1)

4.7
(1.9,17.1)

0.9
(−0.4,3.3)

—

Post Volcker
1990−2019

−0.3
(−1.3,0.5)

0.3
(−0.8,1.7)

−0.3
(−2.8,3)

0.1
(−1.6,1.9)

−1.2
(−6,0.5)

—

Note: Panel (i) shows the median subset distance to minimum loss; total (∆SL, first column) and shock-specific (∆SLs)
together with 68% credible sets in parentheses with each row reporting estimates for a different period. In the first column, the
brackets report median estimates for the upper and lower bounds for ∆SL. Panel (ii) shows the median optimal correction to the
policy path reaction to each identified macro shock with 68% credible sets in parentheses. See main text for shocks definition and
identification.
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The Early Fed stands out as the worse performing regime with a much larger (subset)

distance to minimum loss than in any other period, while the Post Volcker period stands

out as the best performing one with the smallest distance to minimum loss. The Post WWII

period and Pre Fed periods are relatively similar in terms of overall performance with sim-

ilar distances to minimum loss. This indicates that (a) the Early Fed performed worse than

the passive Gold Standard regime, and (b) the post World War II Fed still had substantial

room for improvement, being only marginally superior to the Gold Standard.

This overall evaluation avoids the pitfalls of a naive approach based on the realized loss,

but it does not convey the economic reasons for these different performances: it is silent

about the shocks that caused sub-optimal policy performances or about possibilities for

improvements. More generally, while the DML measures the loss that a superior central

bank could have avoided, it does not directly assess the central bank reaction function: a

distance to minimum loss could be large, because of a poor reaction function or because

of large shocks or structural parameters that amplified the consequences of suboptimal

reactions.

To answer these questions, we will turn to policy evaluations by shock category. Specif-

ically, from Proposition 2 we will compute both the shock-specific DML ∆SLs and

∆SΘp,s, the optimal adjustment to the policy path response to shock s. As we saw, these

statistics are the two sides of the same performance coin, and they will allow to separate the

roles of good policy (appropriate reaction function) and good luck (a stable environment

that limited the consequences of a sub-optimal reaction function).

5.4. Shock-specific evaluation

Our shock-specific evaluation considers five categories of non-policy shocks for each

of the four periods (whenever possible): financial shocks, government spending shocks,

energy price shocks, inflation expectations shocks, and TFP shocks. In addition, we will

report the contribution of monetary shocks to policy performance, i.e., when the monetary

authority itself destabilizes the economy with policy shocks.

Table I reports our results, grouping our shock-specific evaluation statistics (distance

to minimum loss and optimal percentage correction) by shock category. As discussed in

Section 4.4, we caution that category-specific comparisons of policy performance across
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periods (i.e., across rows) are only exhaustive when the identified shocks in a particular

category capture all (or most) of the shocks in that category. In the supplementary material,

we thus also show results based on using corollary 3 to construct ∆SLUc and compare the

Fed across periods from how well the institution responded to forecast revisions in each

category. The policy comparisons are similar.

Results

Panel (i) of Table I reports the median and 68% confidence intervals for the (subset)

distance to minimum loss for each shock s: ∆SLs. To understand the reasons for sub-

optimal performances and assess the reaction function directly, panel (ii) focuses on the

optimal adjustment to the policy path response to each shock s, and specifically reports

the first-year average correction to the policy path response for each broad shock type:
avg(∆SΘp,s)

|avg(Θ0
p,s)|

. This “percentage correction” is a unitless summary measure that can convey

how far off was the Fed to best responding to a particular shock type that it faced. In

addition, we plot the original Θ0
p,s and adjusted policy paths responses Θopt

p,s in the figures

below. This provides a direct way to visualize the magnitude and dynamic profile of the

policy path correction, i.e., the magnitude and dynamic profile of the policy mistake.

We summarize our main results below and provide more discussion and robustness

checks in the online-appendix.

Improved policy in the Post Volcker period Our shock-specific evaluations confirm our

overall evaluation results: we estimate strong improvements in the conduct of monetary

policy in the last 30 years, i.e., roughly after Volcker’s dis-inflation program. In particular,

the policy path corrections are substantially smaller (and non-significant) than in the other

periods, with an average (absolute) percentage correction of 30 percent post Volcker but

above 100 percent in all other periods.19

19The only exception is the Post Volcker Fed’s response to TFP shocks which is non-significant but larger at

120 percent. The reason is mainly because the baseline response is close to zero, in line with Gali (1999) that

policy did not react to TFP shocks post 1985. That said, the welfare consequences are minimal (the TFP DML

is tiny at 0.1), also in line with Gali (1999)’s conclusion that TFP shocks account for little of business cycle

fluctuations.
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The conduct of policy did improve before Volcker however in one dimension: the vari-

ance of policy shocks went down substantially after WW II. In other words, since World

War II the Fed has not directly contributed to destabilizing the economy with policy shocks.

This can be seen from the DML for policy shocks, which is much smaller for the post World

War II than for the early Fed (see column “MP”). In other words, even though the reaction

function is not substantially superior in the post WWII period, erratic behavior in the con-

duct of policy was much improved after WWII, in contrast to the stop-and-go policies of

the 30s or the over-reaction of the early 20s (e.g., Friedman and Schwartz, 1963, Romer,

1992).

Responding to financial shocks Focusing on the reaction to financial shocks, we can

contrast the Post Volcker Fed with the Early Fed of the 1920s-1930s. Our results confirm

Bernanke’s promise to not repeat the mistakes of the past: the “poor” reaction function of

the early Fed led to massive welfare losses, while the “good” reaction function of the Post

Volcker Fed ensured little welfare losses coming from a sub-optimal reaction function.

To see this, we can first contrast the optimal policy path response adjustment for financial

shocks estimated for the Early Fed period with the policy path response adjustment for

the Post Volcker period. With 100× avg(∆SΘp,s)

|avg(Θ0
p,s)|

=−230% (statistically significant) for the

Early Fed, the Fed reaction to banking panics was much too tight; not only was the response

too timid, it had the wrong sign (the adjustment being over −100%) and the policy path

adjustment flips the sign of the policy path response; a decline in the policy rate instead of

an increase.

To better appreciate this reaction function improvement, Figures 5 and 6 display the

impulse responses underlying our calculations, for the 1913-1941 estimates and for the

1990-2019 estimates. The top rows show the impulse responses of inflation, unemploy-

ment and the interest rate to a monetary policy shock —an adverse policy shock lowering

inflation and raising unemployment—, while the bottom rows show the responses of the

same variables to a financial shock —an adverse financial shock lowering inflation and

raising unemployment. Notice how, in the Early Fed period, the Fed raised the discount

rate in response to adverse financial shocks. Combined with the decline in inflation caused

by the financial shock, this means that the real policy rate increased substantially and mone-

tary policy was contractionary in the aftermaths of banking panics. The (substantial) policy
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path response adjustment corrects this sub-optimal reaction function and turns the table

on monetary policy by running an expansionary policy. After reaction adjustment (dashed

green line), the policy rate goes down substantially on impact, and the paths of inflation

and unemployment are consequently much more stable.

FIGURE 5.—EARLY FED, 1913-1941, REACTION TO FINANCIAL SHOCKS
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rate to a monetary policy shock (resp. financial shock). The dotted green lines show the adjusted impulse responses: Γ0 +R0τ∗0 .
The 95% and 67% credible sets are plotted as dark and light shaded areas, respectively.

Consider now the evaluation of the post Volcker Fed. The estimated policy adjustment is

much smaller and non significant, representing only a −30 percent correction to the orig-

inal policy path response, indicating that the post Volcker Fed period reacted much more

appropriately to financial shocks.20 As a result, while the 2007-2008 financial disruptions

20That said, a negative path adjustment indicates that the Fed should have lowered the fed funds rate more in

response to financial shocks (according to the posterior mean). This could indicate that the presence of the zero

lower bound may have limited somewhat the Fed’s ability to best react to the 2007-2008 financial crisis. In the

supplementary material Barnichon and Mesters (2025), we generalize our method to measuring performance in

a constrained optimization environment and impose a zero lower bound on interest rates. The optimal reaction

adjustment is then close to zero.
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were substantial, the corresponding estimated DML over the post-Volcker period is tiny

(0.1); two orders magnitude smaller than the DML for financial shocks for the Early Fed

(27.7). This result can also be seen in the impulse responses estimated for the Post Vol-

cker period (Figure 6). Following a financial shock, the policy rate is negative —monetary

policy is expansionary (black line, lower-right panel)—, and the policy path response ad-

justment (green line) is minor, leading to modest adjustments to the responses of inflation

and unemployment. This is the sign of good policy.

FIGURE 6.—POST VOLCKER FED, 1990-2019, REACTION TO FINANCIAL SHOCKS
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The early Fed vs the passive Gold Standard An interesting, and perhaps surprising,

finding is that the Early Fed performed worse than the passive Gold standard: Both the

DMLs and the policy path adjustments are larger for the Early Fed than for the Gold Stan-

dard. The total DML is about 10 times larger in the Early Fed period than in the Pre Fed

period. While this difference reflects the fact that the Early Fed faced the larger shocks of

the Great Depression, panel (ii) shows that the reaction function of the Early Fed is actually
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substantially worse across all shocks. The most striking difference is the reaction to bank-

ing panics with a correction of −230 percent for the Early Fed but “only” −100 percent for

the passive Gold Standard. Interestingly, this is consistent with narrative evidence that the

Early Fed was deeply influenced by the real bills doctrine and excessively worried about

speculations (e.g. Humphrey and Timberlake, 2019).

The Great Inflation US monetary policy during the 1970s has generally been consid-

ered poor (e.g., Romer and Romer, 2004a), in particular not responding more than one-to-

one with changes in inflation (Clarida et al., 2000) and violating the so-called Taylor prin-

ciple. However, beyond that Taylor principle, it has been difficult to quantify how “poor”

monetary policy had been.

Overall, we find that the Fed’s reaction function during the 60s-70s is on a par (i.e., “just

as bad”) with the reaction function of the early Fed, with policy path corrections of similar

magnitudes, though the nature of the underlying shocks is different. Post World War II, the

Fed reaction was too weak following all the different supply-type shocks that we identified:

energy price shocks, TFP shocks as well as inflation expectation shocks. In fact, the reac-

tion to inflation expectation shocks over the 60s-70s displays the largest deviation from

optimality over the entire 150 year of monetary history. The consequences of these sub-

optimal reactions were much smaller however, with DMLs an order of magnitude smaller

for the Post WWII period than for the Early Fed period.21

To illustrate these sub-optimal reaction functions, Figure 7 plots the estimated impulse

responses for inflation expectation shocks. In response to an inflation expectation shock,

inflation rises progressively, but the policy rate does not respond, leading to negative real

interest rates and further increasing inflation. The (large) policy path correction restores

the Taylor principle: after correction, the policy rate rises strongly following an inflation

expectation shock (lower-right panel, Figure 7) and limits the rise in inflation (at the cost

of higher unemployment).

21There are two possible reasons why a given suboptimal reaction function translates into larger losses, i.e.,

into larger distances to minimum loss: (i) the magnitudes of the shocks themselves were larger in the Early Fed

period, and/or (ii) the Early Fed economy was less resilient in the face of adverse disturbances than the post WWII

economy.
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FIGURE 7.—POST WWII FED, 1951-1984, REACTION TO πe SHOCKS
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6. CONCLUSION

In this paper, we propose a semi-structural method to evaluate policy makers with mini-

mal assumptions on the underlying economic model. Specifically, for a large class of linear

forward looking macro models and quadratic loss functions, it is possible to measure the

distance to the optimal reaction function and distance to minimum loss from well known

and estimable sufficient statistics: the impulse responses to policy and non-policy shocks.

An important open question for US monetary policy going forward is why did large

and uniform improvements happen only in the last 30 years. A better understanding of the

functioning of the economy (Friedman and Schwartz, 1963), better and more timely data

(Romer, 1986, Orphanides, 2001), better forecasting (Dominguez et al., 1988) and better

causal inference methods (Romer and Romer, 1989) could all be part of the improvements

in policy over the last 30 years. Parsing out these different reasons is an important question

for future research.

Our proposed methodology could be applied to many other important evaluation ques-

tions; in the context of monetary policy (e.g., comparing central banks such as the Fed
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vs the ECB during the Great Recession), in the context of fiscal policy (e.g., comparing

the performance of US presidents, health policy (e.g., comparing governments’ policy re-

sponses to COVID), or climate change mitigation policy. We leave these questions for

future research.

Last, we note that our approach focuses on evaluating reaction functions given a set of

objectives, but it is silent about the policy objectives themselves. For instance, what set of

policy objectives should a policy institution target? And what long-run level to target? For

instance, what are the costs and benefits of a change in the inflation target? Developing

sufficient statistics methods to study these long-run questions would be a fruitful avenue

for future research.
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