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1 Introduction

The linear simultaneous equations model (LSEM) is a benchmark model used to analyze

general equilibrium relationships in economics. It was placed in its modern form by Haavelmo

(1943, 1944), building on Frisch (1933) and Tinbergen (1939) among others. As is well known,

without additional restrictions, not all parameters of the LSEM can be uniquely identified

from the first and second moments of the observed data series, see Dhrymes (1994) for an

in-depth discussion.

Interestingly, this identification problem vanishes (up to permutation and scale) when

the underlying structural shocks are independent and at most one of them follows a Gaus-

sian distribution (e.g. Comon, 1994). This identification approach has a long history in the

statistics and signal processing literatures where it is often referred to as independent com-

ponents analysis, see Hyvärinen, Karhunen and Oja (2001) for a textbook treatment. More

recently, this approach has been adopted in the econometrics literature, where interest has

centered on developing methodology for conducting inference on the parameters of various

LSEMs based on non-Gaussian identification (e.g. Gouriéroux, Monfort and Renne, 2017).

Unfortunately, if in the true data generating process multiple structural shocks follow a

Gaussian distribution some structural parameters may be under- or un-identified and stan-

dard inference methods that aim to exploit non-Gaussian distributions may fail to control

size. Moreover, as is typical in models with points of identification failure, such behavior

is also observed if the true distributions of the shocks are sufficiently close to Gaussianity.

Intuitively, in such weakly non-Gaussian settings the available identifying information is

limited relative to sampling variation leading to asymptotic coverage distortions when us-

ing standard inference methods, such as maximum likelihood and moment condition based

methods.

Similar (weak) identification problems occur in many other econometric models, e.g. in-

strumental variable models, nonlinear regression models and many others, see Staiger and

Stock (1997), Stock and Wright (2000) and Andrews and Mikusheva (2015) for some ex-

amples. The key difference between this existing literature and the non-Gaussian LSEM is

that, in the latter, the parameters responsible for the possible identification failure are density

functions, i.e. infinite dimensional parameters. Therefore, whilst conceptually the identifi-

cation problem is the same, providing robust inferential methods requires a new approach

which is capable of handling identification failure caused by infinite dimensional nuisance

parameters.

To this extent, this paper develops a new approach for conducting inference in LSEMs

that is inspired by the weak identification robust methods developed in econometrics (e.g.
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Stock and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and the general

semiparametric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart

(2002). In brief, we treat the LSEM as a semiparametric model, where the densities of the

independent structural shocks are treated non-parametrically, and we construct confidence

bands for the possibly unidentified structural parameters of interest by inverting semipara-

metric score tests. The approach efficiently exploits non-Gaussianity when it is present in the

data and yields confidence bands which do not asymptotically under-cover under sequences

of densities that are local (in a
√
n neighborhood) to the true density. Moreover, the test

is easy to implement and the critical values accompanying the test statistic are standard

chi-squared.

The effective score test that we propose is the semi-parametric analog of the Neyman-

Rao test (e.g. Neyman, 1979; Hall and Mathiason, 1990). In the conventional Neyman-Rao

test the scores for the parameter of interest are orthogonalized with respect to the scores for

the finite dimensional nuisance parameters. In our setting the nuisance parameter includes

the densities of the shocks, i.e. an infinite dimensional parameter. While such nuisance

functions result in the orthogonal projection being more technically demanding to derive,

the main idea of Neyman (1979) continues to apply.

Formally, we show that the semi-parametric score test is locally robust in the sense that

its null rejection probability is no greater than the nominal level under parameter sequences

that can be described by local deviations from the true parameters which satisfy the null

hypothesis. In particular, the null rejection probability of the test is controlled for sequences

of densities that converge at a
√
n rate to the Gaussian density, a point of identification

failure. These sequences are the natural counterpart in our setting to the “weak identification

asymptotics” as found in, for example, Staiger and Stock (1997); Stock and Wright (2000);

Moreira (2003); Kleibergen (2005); Andrews and Mikusheva (2015). Moreover, they are those

considered in the theory of Kaji (2021) who studies estimation in weakly identified semi-

parametric models.1 In addition, we show that under strong identification, which requires

all errors to be (sufficiently) non-Gaussian, the score test is semi-parametrically efficient in

the sense that it attains various local asymptotic power bounds for testing scalar or vector

valued parameters (cf. Choi, Hall and Schick, 1996).

We evaluate the finite sample performance of the semiparametric score test in a large

simulation study. We find that the null rejection probability of our test remains close to the

nominal level for all distributions considered, including those which are “close” to the Gaus-

sian distribution and the Gaussian distribution itself. In contrast, tests that are based on the

1See also Andrews and Mikusheva (2022) who study weakly identified GMM models using the same type
of local sequences.
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sampling variation of (pseudo)-maximum likelihood or GMM estimators often substantially

over-reject in weakly non-Gaussian settings. Further, for moderate sample sizes the power

of the semiparametric test is comparable to the parametric score test that relies on knowing

the functional form of the density. When the parametric density of the (pseudo)-maximum

likelihood score test is misspecified the semi-parametric test is always found to be preferable.

To showcase the empirical value of our methodology we adopt the score test to construct

confidence bands for the effect of education on wages. To do so, we consider a special

case of the LSEM model: the linear instrumental variable (IV) model. We show that the

presence of independent non-Gaussian errors allows to (i) strengthen identification for the

case where the instrument is assumed exogenous and (ii) test and correct for endogenous

instrumental variables. We emphasize that our theory allows for, and is locally robust to,

weak instruments.

For the model specification and data considered in Card (1995) we find that inverting

the semi-parametric score test gives the shortest confidence intervals for the returns to ed-

ucation which are, for instance, shorter when compared to confidence intervals based on

the Anderson and Rubin (1949) statistic. Also, when we relax the instrument exogeneity

assumption and use non-Gaussianity to identify the returns to education, we find that (i)

the assumption that the proximity to college instrument is exogenous cannot be rejected

and (ii) the confidence interval for the returns to education remains precisely estimated. In

contrast, using alternative but non-efficient methods we find considerably larger confidence

sets when relaxing the instrument exogeneity assumption.

In general, this paper highlights the problem of weak non-Gaussianity and provides a

solution in the setting of i.i.d. linear simultaneous equations models. We point out that

similar non-Gaussian identification approaches have been adopted in other settings and it is

likely that weak non-Gaussianity continues to cause inference problems for standard MLE

and GMM methods in these settings. Prominent examples include (i) structural VAR(MA)

models (Lanne and Lütkepohl, 2010; Moneta et al., 2013; Lanne, Meitz and Saikkonen,

2017; Maxand, 2018; Gouriéroux, Monfort and Renne, 2019; Tank, Fox and Shojaie, 2019;

Herwartz, 2019; Herwartz, Lange and Maxand, 2019; Bekaert, Engstrom and Ermolov, 2020,

2021; Lanne and Luoto, 2021; Guay, 2021; Sims, 2021; Moneta and Pallante, 2022; Fiorentini

and Sentana, 2023; Velasco, 2022; Davis and Ng, 2022; Drautzburg and Wright, 2023), (ii)

measurement error models (e.g. Reiersøl, 1950; Kapteyn and Wansbeek, 1983; Dagenais and

Dagenais, 1997; Erickson and Whited, 2000, 2002; Bonhomme and Robin, 2009), and (iii)

triangular systems (e.g. Lewbel, Schennach and Zhang, 2023). In future work we aim to

extend our semi-parametric inference approach to cover these more general settings. The

supplementary material that accompanies this paper provides a step in this direction by
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considering a class of nonlinear simultaneous equations models.

Further, as mentioned above, this paper shows that the proposed semi-parametric score

test has null rejection probability asymptotically bounded by the nominal level under weak

identification asymptotics, i.e. under parameter sequences representing local deviations from

the true parameters (which satisfy the null hypothesis).2 A global uniformity statement —

not restricted to local sequences— as developed in, inter alia, Andrews and Cheng (2012),

Andrews and Cheng (2013) and Andrews, Cheng and Guggenberger (2020) for models where

identification failure is characterized by a finite dimensional parameter, is beyond the scope

of this paper. It remains an open question whether global uniformity can be achieved in a

meaningful way, i.e. without unreasonably restricting the parameter space and/or equipping

it with a very strong metric, in models where identification failures are characterized by

infinite dimensional parameters.

The remainder of this paper is organized as follows. In the next section we provide

a simple example that illustrates the identification problem and intuitively discusses our

solution. Section 3 presents the main LSEM model and provides the implementation details

for the effective score test. Section 4 discusses the main theoretical results including the

required assumptions. Sections 5 and 6 summarize the results from the simulation and

empirical studies. Section 7 concludes. Unless otherwise mentioned all proofs are provided

in the Appendix. Any references to sections, equations, lemmas etc. which start with “S”

refer to the supplementary material.

2 Illustrative example

In this section we use a simple example to illustrate: (i) the identification problem in LSEMs,

(ii) why conventional inference methods suffer from size distortions when the structural

shocks have densities close to Gaussian and (iii) how our proposed approach aims to circum-

vent such distortions.

The identification problem

Consider the simple bi-variate model

Yi = A−1ϵi , i = 1, . . . , n , (1)

2Such sequences have also been used to model weak identification in semi-parametric models in Kaji
(2021); Andrews and Mikusheva (2022).
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where Yi is a vector of observable variables, A is a rotation matrix (i.e. A−1 = A′ and

det(A) = 1) and ϵi is a vector with independent structural shocks ϵik, for k = 1, 2, that have

mean zero, unit variance and common density η. For concreteness, we will parameterize the

rotation matrix as follows

A =

[
cos(α) − sin(α)

sin(α) cos(α)

]
, (2)

where α ∈ [0, 2π) and we let α0 denote the true parameter.3

Model (1) has two parameters: the parameter of interest α and the infinite dimensional

nuisance parameter η. Suppose for now that η is known and let the log likelihood function

for Yi be denoted by ℓα(·). The parameter α is locally identified if the expected score of

ℓα(Yi) with respect to α is non-zero for all α ̸= α0 in a neighborhood of α0.

Whether local identification occurs depends crucially on η. To illustrate, consider the

case where η is equal to the Gaussian density. Since ϵi is normalized we have

Eℓα(Yi) ∝ −1

2
E(AYi)′(AYi) = −1 ,

and hence the expected loglikelihood takes the same value irrespective of α. This is plot-

ted in the top left panel of Figure 1, where we show the expected likelihood Eℓα(Yi) as a

function of α with α0 = π as the true parameter (an arbitrary choice). This illustrates the

standard identification problem in linear simultaneous equations models: without additional

identifying restrictions, the impact effects of the structural shocks are not identifiable when

the structural shocks follow a Gaussian distribution.

The other plots in Figure 1 show that this is no longer the case when we move away

from the Gaussian distribution. In each case the expected gradient becomes non-zero at

values α ̸= α0 in a neighbourhood of α0, i.e. local identification occurs. While for the

(standardized) Student’s t distribution with five degrees of freedom (i.e. t(5)) the change

in the value of the expected likelihood is substantial it is easy to see that for more modest

deviations from Gaussianity (e.g. t(15)) the difference is less pronounced. Further, note that

non-Gaussian densities do not ensure α is globally identified, instead identification is only

up to permutation and sign of the shocks.

3Note that in our general framework we will not restrict A to be a rotation matrix nor η to be common.
This example is chosen for exposition purposes only and corresponds to the case where the variance of Yi is
normalized to unity.
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Figure 1: (Weak) Non-Gaussian Identification
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Notes: In the figure we show the expected log likelihood (red line) as a function of α ∈ [0, 2π). The true

value is α0 = π.

Finite sample size distortions

In population α is always locally identified when all but one component of η is non-Gaussian

(e.g. Comon, 1994, Theorem 11), but this is not sufficient for good performance of standard

testing procedures in finite samples. In particular, if the structural shocks are too close to

Gaussian, the available identifying information may be small relative to the sampling vari-

ability. Standard asymptotic approximations are not reliable in this setting and, as a result,

testing procedures based on these approximations may fail to provide reliable inference.

To illustrate how the density η affects standard inference methods in finite sample, we

draw 5000 samples {Yi}ni=1 from model (1) for different η’s using different sample sizes n =

250, 500, 750. Figure 2 shows the finite sample distribution of the t-statistic for the hypothesis

H0 : α = α0, with α0 = π, based on the maximum likelihood estimator under the assumption

that η is known. The blue dashed lines show theN (0, 1) density that corresponds to the usual
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Figure 2: Poor asymptotic approximation close to Gaussianity
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Notes: In the figure we show the finite sample distribution of the t-statistic based on the maximum likelihood

estimator of α (the true value is α0 = π) for different sample sizes (n) and different degrees of freedom (ν) in

the (standardised) t distribution, all based on 5000 replications. Letting α̂ be the ML estimator and α0 the

the null hypothesis value of α, the t-statistic used is t =
√
n(α̂− α0)×

√
Î, with Î the usual outer product

of gradients (OPG) estimator of the (Fisher) information: Î = 1
n

∑n
i=1 ℓ̇α̂(Yi)

2, with ℓ̇α = ∇αℓα.
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limit of the t-statistic. As can clearly be seen in this figure, the quality of the approximation

provided by the standard Gaussian depends crucially on the underlying density, η. For a

given sample size, the approximation deteriorates substantially the closer η is to a standard

Gaussian density.

This deterioration results in poor size control of standard tests. Table 1 shows the

empirical rejection frequencies for three standard tests in the same setting: Wald (W),

likelihood ratio (LR) and Lagrange multiplier (LM) (or score) tests, all computed under the

assumption that η is known. The empirical rejection frequencies correspond to the test for

H0 : α = α0 with nominal level a = 0.05, where the critical values are based on the standard

χ2
1 asymptotic approximation.

We find that the Wald test is severely size distorted for η close to Gaussian; in view of the

poor quality of asymptotic approximation depicted in Figure 2 this is not surprising. As η

gets closer to Gaussianity, the likelihood ratio test starts to under-reject as when α is poorly

identified the likelihood values are very similar. Both of these tests are based on estimates

of α and, in weakly identified settings, such estimates will be inaccurate.

In contrast, the score test (LM) shows correct size as it fixes α = α0 under the null and

α does not need to be (well) identified for this test to be correctly sized. Intuitively, with α

fixed and η known there are no further unknown elements in the scores and the remaining

uncertainty is due to sampling variation. This observation provides the first building block

for the test we will construct: it will be a score type test which fixes α = α0 under the null.

Table 1: Rejection Frequencies for ML tests close to Gaussianity

t(15) t(10) t(5)

n W LM LR W LM LR W LM LR

250 25.26 4.42 3.74 20.56 4.24 4.04 8.88 4.84 4.08

500 21.76 4.54 4.52 13.10 4.38 3.60 6.38 4.42 4.92

750 17.12 4.96 3.94 9.90 4.88 3.42 6.12 5.28 5.64

Notes: The table shows the empirical rejection frequencies for the three maximum likelihood tests, under the

assumption that η is known and based on 5000 Monte Carlo replications for the baseline model Yi = R′ϵi.

The test has nominal level a = 0.05.
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Towards a semi-parametric score test

In practice, η will be unknown. To build up to our semi-parametric approach, consider first

the case where η is known up to a finite dimensional parameter vector, say ν. For example

ν may include the degrees of freedom of the Student’s t distribution.

For such cases Neyman (1979) proposed a convenient extension of the standard score test,

that amounts to first orthogonalizing the scores for α with respect to the scores for ν and then

computing a quadratic form of the score statistic. To illustrate let ℓ̇(Yi) = (ℓ̇α(Yi), ℓ̇ν(Yi))
′,

ℓ̇α(Yi) = ∇αℓα,ν(Yi), ℓ̇ν(Yi) = ∇βℓα,ν(Yi) and Î = 1
n

∑n
i=1 ℓ̇(Yi)ℓ̇(Yi)

′, denote the score and

information matrix for α and ν. The Neyman-Rao score test statistic is given by

S =

(
1√
n

n∑
i=1

κ̂(Yi)

)′

Î−1

(
1√
n

n∑
i=1

κ̂(Yi)

)
,

with

κ̂(Yi) = ℓ̇α(Yi)− Îαν Î
−1
νν ℓ̇ν(Yi) and Î = Îαα − Îαν Î

−1
νν Îνα ,

where Î·· denote the corresponding blocks of Î.4 The (estimated) orthogonalized scores κ̂(·)
are often referred to as the (estimates of the) effective scores and Î is the corresponding

(estimate of the) effective information matrix.

This score statistic is usually evaluated as α = α0 and some
√
n consistent estimate

for ν. Whenever such an estimate exists, S will converge to a standard χ2 limit under

the null provided that Î is invertible.5 In such cases, tests based on S retain correct size

regardless of whether or not α is well identified making them attractive for settings where

identification failure due to finite dimensional nuisance parameters is a concern (e.g. Andrews

and Mikusheva, 2015).

Unfortunately, there are two distinct problems that may arise in the solution sketched

above. First and most practically relevant, modeling the deviations from the Gaussian den-

sity in a parametric manner may result in biases and/or lower power whenever the true

density lies outside of the parametric class considered. Second, parametric deviations from

the Gaussian density as captured by ν generally nest the Gaussian distribution. In many

such cases the information matrix associated to ν, i.e. Iνν , becomes singular when the true

density is Gaussian. Sometimes this problem can be circumvented by re-parametrizing ν, e.g.

parameterize ν̃ = ν−1 for the degrees of freedom of the Student’s t or for a skewed-normal

4This is numerically equivalent to the “usual” score test when the nuisance parameter ν is estimated by
(restricted) maximum likelihood under the null hypothesis (Kocherlakota and Kocherlakota, 1991).

5In our results below we allow Î to be singular and rely on an eigenvalue truncated generalized inverse,
see also Andrews (1987), Lütkepohl and Burda (1997) and Andrews and Guggenberger (2019).
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one can adopt the centered parametrization of Azzalini and Capitanio (2014, Section 3.1.4).

However, for other examples, such as mixtures of normals, there are no available transforma-

tions that prevent the information matrix from becoming singular under Gaussianity. That

is, ν itself becomes unidentified (Rothenberg, 1971, Theorem 1) and consistent estimators of

ν do not exist.

We note that these problems interact as solving the identification problem for ν can be

done by adopting a pseudo maximum likelihood approach that fixes ν at some reasonable

value (e.g. Gouriéroux, Monfort and Renne, 2017), but this immediately implies that the

true likelihood may be far away from the fixed pseudo likelihood, resulting in a test with

little power.

In the present paper, we do not assume that the parametric form of η is known up

to a finite dimensional parameter vector but instead treat η non-parametrically. To avoid

the creation of additional identification problems we rely on B-spline estimators to non-

parametrically estimate the aspect of η which is necessary to implement our procedure: the

log density score of η (i.e. the logarithmic derivative of η). Unlike the finite dimensional pa-

rameters ν discussed above, the log density score does not suffer from identification problems

at Gaussianity.

Despite such changes, the underlying logic of our approach is similar to that sketched

above. We first orthogonalize the score for α with respect to the scores for η and obtain a

semi-parametric analog of the conventional Neyman-Rao score test. This requires technical

adjustments as the scores with respect to η need to be defined differently and the projection

with respect to η scores requires more care. For this we follow the semi-parametric literature

as outlined in Bickel et al. (1998) and van der Vaart (2002).

3 Locally robust inference for LSEMs

In this section we propose a semi-parametric score test for testing parameters in a general

class of linear simultaneous equations models. We first introduce the model class and give

some motivating examples. Thereafter, we present a heuristic derivation for the score test and

the exact implementation details. All theoretical properties including the main assumptions

are deferred to the next section.

3.1 General model, objectives and examples

We consider the linear simultaneous equations model for a random sample of K endogenous

variables Yi, d exogenous variables Xi = (1, X̃ ′
i)

′ and K independent structural shocks ϵi,
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which have mean zero and unit variance. Specifically, we have

Yi = BXi + A−1ϵi , i = 1, . . . , n , (3)

where we observe Wi = (Y ′
i , X

′
i)

′ and the matrices B and A−1 map the explanatory variables

and the structural shocks to the endogenous variables. The density functions of the compo-

nents of ϵi = (ϵi1, . . . , ϵiK)
′ are denoted by (η1, . . . , ηK) and the density of X̃i is given by η0.

We set η = (η0, η1, . . . , ηK).

As illustrated in the previous section, depending on the shapes of η1, . . . , ηK we may not

be able to identify all parameters in A. To model this we let A = A(α, σ), where A(α, σ)

is a function of both (i) the parameters α which may suffer from identification failure and

(ii) the well-identified parameters in σ. We let α ∈ A ⊂ RLα and set β = (b, σ) ∈ B ⊂
RLb × RLσ = RLβ , with b = vec(B).

In this paper we leave the parametrization of A = A(α, σ) largely unspecified. In As-

sumption 1 we state the formal requirements and subsequently provide examples that can

be adopted within our general framework. We stress that the dimensions of α and σ are

fixed, as is the dimension of Yi. As such our framework does not deal with high dimensional

LSEMs. A special case of model (3) is obtained when setting B = 0 for which the model re-

duces to the baseline model for independent components analysis (e.g. Hyvärinen, Karhunen

and Oja, 2001). Further, after pre-whitening the residuals we obtain the model (1) from the

illustrative example.

The general LSEM (3) depends on the following parameters

θ = (γ, η) , with γ = (α, β) and β = (b, σ) , (4)

where γ ∈ Γ = A× B summarizes all finite dimensional parameters, including the possibly

weakly identified α and the well identified β, and η includes the infinite dimensional pa-

rameters, i.e. the densities of the shocks for which the parameter space will be formalized

below.

We are interested in testing the possibly weakly identified parameters α. To do so, we

consider the hypothesis

H0 : α = α0 against H1 : α ̸= α0 . (5)

Tests for such H0 can then be inverted to yield confidence sets for α. A related set-up is

found in Risk, Matteson and Ruppert (2019) and Jin, Risk and Matteson (2019) who assume

that the structural shocks can be separated into exactly Gaussian and non-Gaussian shocks.
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We do not impose such structure, but we note that if indeed shocks can be separated in

this way our approach will remain valid, but likely less efficient when compared to Risk,

Matteson and Ruppert (2019).

Parameterizing the LSEM In practice, we can adopt different parametrizations for

modeling A = A(α, σ) in (3). A general requirement is that A is non-singular and that it

is sufficiently smooth with respect to α and σ. The following assumption formalizes these

conditions.

Assumption 1. Define the partial derivative matrices Dα,l = ∂A(α, σ)/∂αl, for l = 1, . . . , Lα,

and Dσ,m = ∂A(α, σ)/∂σm, for m = 1, . . . , Lσ. Further, for each i, j ∈ {1, . . . , K}, l ∈
{1, . . . , Lα} and m ∈ {1, . . . , Lσ} define ζαl,k,j := [Dα,l]k•A

−1
•j and ζσm,k,j := [Dσ,m]k•A

−1
•j , where

the notation M•j or Mj• denotes the jth column or row (respectively) of a matrix M . We

assume that for all (α, β) ∈ A× B

1. A(α, σ) is non-singular

2. (α, σ) → A(α, σ) is continuously differentiable

3. (α, σ) → ζαl,k,j(α, σ) and (α, σ) → ζσm,k,j(α, σ) are locally Lipschitz continuous for all

j, k, l,m

The following examples illustrate some possible parametrizations that are of practical

interest and satisfy the smoothness assumptions.

Example 1 (Supply and Demand). Following Working (1927)’s canonical analysis of supply

and demand curves let Y s
i1 and Y d

i1 denote the quantity demanded and supplied of some good

with price Yi2. In equilibrium we have Y d
i1 = Y s

i1 and a simple model (omitting covariates for

convenience) is given by

Yi1 = α1Yi2 + σ1ϵi1 (demand)

Yi1 = σ3Yi2 + σ2ϵi2 (supply)

where ϵi1 and ϵi2 are independent demand and supply shocks. We can accommodate this

model in our general framework by letting σ = (σ1, σ2, σ3) and defining the mapping A(α, σ)

according to

A(α, σ) =

[
σ1 0

0 σ2

]−1 [
1 −α1

1 −σ3

]
.

Note that even with non-Gaussian errors, which we do not assume, the matrix A(α, σ) is

only identifiable up to post multiplication by DP , where P is a permutation matrix and D a
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diagonal matrix with elements ±1 on the main diagonal (e.g. Comon, 1994, Theorem 11). In

applications we could impose sign restrictions to select the permutation that is of economic

interest. For instance, here we could impose α1 ≤ 0 and σ3 ≥ 0 to ensure that the demand

curve is downward sloping and the supply curve is upward sloping, as well as σ1, σ2 > 0 to

ensure that the scales are positive. As such we would only test values for α1 in (5) that

satisfy the sign restrictions.

Example 2 (Instruments). In the context of the previous example, a common identification

approach is based on using instrumental variables. Suppose that Yi3 is an instrument that

correlates with with the supply shock but is believed to be uncorrelated with demand, an

assumption that we would like to test. After re-defining the errors and parameters we can

write the model as

Yi1 = α1Yi2 + σ1ϵi1

Yi1 = σ4Yi2 + σ5Yi,3 + σ2ϵi2

Yi3 = α2ϵi,1 + σ3ϵi3

where α2 = 0 implies that the instrument is exogenous and σ5 ̸= 0 implies that the instrument

is relevant. We have Yi = (Yi1, Yi2, Yi3)
′, ϵi = (ϵi1, ϵi2, ϵi3)

′ and

A(α, σ) =

 σ1 0 0

0 σ2 0

α2 0 σ3


−1  1 −α1 0

1 −σ4 −σ5
0 0 1

 .

With this parametrization we have several options. First, assuming that the instruments are

exogenous we set α2 = 0, and use the non-Gaussian errors to provide additional identifying

information for α1. This could be of use when instruments are weak. Second, we can relax

the instrument exogeneity assumption and jointly test α = (α1, α2). This allows to simul-

taneously asses the slope of the demand curve and the exogeneity of the instrument. If the

instruments are irrelevant and the errors are Gaussian we will not be able to reject any value.

Example 3 (Rotation matrix). As in Gouriéroux, Monfort and Renne (2017) we can set

A(α, σ)−1 = Σ1/2(σ)R(α)′, where Σ1/2(σ) is lower triangular with parameters σ and R(α) is

a rotation matrix. In this setting we have σ = vech(Σ1/2) and α parametrizes R using the

trigonometric transformation, the Cayley transformation or the exponential transformation

of a skew-symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017; Magnus, Pijls and

Sentana, 2021).

These examples highlight different options for parametrizing A(α, σ). In examples 1 and
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2 the parameter α1 has a direct economic interpretation after an economically interesting

permutation has been selected using either sign restrictions or the instrumental variable. In

example 2 the parameter α2 has an econometrically interesting interpretation: if it is non-

zero, the instrument is not exogenous. In example, 3 the parameters α do not have a direct

structural interpretation, but this specification corresponds to a common choice in the ICA

literature (e.g. Hyvärinen, Karhunen and Oja, 2001; Gouriéroux, Monfort and Renne, 2017).

3.2 Effective score test for LSEMs

Next, we provide a step by step implementation guide for the semi-parametric score test

that aims to test H0 = α = α0. We postpone the theoretical justification of the test to the

next section.

Effective score and information matrix As intuitively explained in the simple example

of Section 2, the proposed score test for the null hypothesisH0 : α = α0 is of the Neyman-Rao

type, which relies on the effective scores for the parameters of interest α. Loosely speaking

these scores are defined as the projection of the score function for α on the orthogonal

complement of the space spanned by the score functions for the nuisance parameters (β, η)

(e.g. Choi, Hall and Schick, 1996; Bickel et al., 1998; Newey, 1990; van der Vaart, 2002).

In the case of interest here, where the nuisance parameter contains both finite (β) and

infinite-dimensional (η) components, the effective score function can be calculated in two

steps: (1) compute the projection of the score for γ = (α, β) on the orthocomplement of the

space spanned by the score functions for η, and (2) partition the resulting object into the

components corresponding to α and β and project the former onto the orthocomplement of

the latter.

For step (1) we follow Amari and Cardoso (1997) and Chen and Bickel (2006) who derive

this projection for a special case of the LSEM (3) where B is known to be 0, i.e. the ICA

model. The log likelihood contribution for observation Wi from model (3) is given by

ℓθ(Wi) = log |A|+
K∑
k=1

log ηk(Ak•Vi) + log η0(X̃i) ,

where Vi = Yi − BXi.
6 The scores (i.e. partial derivatives of ℓθ) with respect to the

components of α, σ and b are denoted by ℓ̇θ,αl
= ∇αl

ℓθ, ℓ̇θ,σl
= ∇σl

ℓθ and ℓ̇θ,bl = ∇blℓθ. The

effective scores are obtained by projecting ℓ̇θ,αl
, ℓ̇θ,σl

and ℓ̇θ,bl on the orthocomplement of the

6Throughout the main text the dependence of e.g. Vi, A, Dx,l and ζxl,k,j , with x ∈ {α, σ}, on (parts of)
γ is left implicit.

15



space spanned by the score functions for η:7

T =

{
w 7→ h0(x̃) +

K∑
k=1

hk(Ak•(y −Bx)) : h = (h0, h1, . . . , hK) ∈ H =
K∏
k=0

Hk

}
(6)

where x = (1, x̃′)′, w = (y′, x′)′. H0 is the space of bounded functions h0 : Rd−1 → R which

satisfy Eh0(X̃i) = 0. For k = 1, . . . , K, Hk is the space of functions hk : R → R which are

bounded and continuously differentiable with bounded derivative and satisfy E[hk(ϵi,k)] =
E[ϵi,khk(ϵi,k)] = E[κ(ϵi,k)hk(ϵi,k)] = 0, with κ(z) = 1 − z2. The set T is the collection of

scores corresponding to η = (η0, η1, . . . , ηK): the densities of X̃i and ϵi1, . . . , ϵiK , see Lemma

1 in the appendix for a formal statement.

Intuitively, each hk ∈ Hk is restricted such that ηk(1 + thk) is a density function and

satisfies the conditions imposed by the model (for all small enough t). For instance, for

k = 1, . . . , K, the restrictions on hk ensure that ϵik = Ak•Vi remains mean zero and with

variance one under the density ηk(1+ thk). The elements of the set T are obtained by taking

the derivative of the log likelihood evaluated at θt = (γ, η0(1 + th0), . . . , ηK(1 + thK)) with

respect to t and evaluating this at t = 0, for a given h = (h0, . . . , hK) ∈ H; see van der Vaart

(1998, Section 25.3) for a general discussion.

The effective scores are then defined as ℓ̃θ,αl
= ℓ̇θ,αl

− Πℓ̇θ,αl
, ℓ̃θ,σl

= ℓ̇θ,σl
− Πℓ̇θ,σl

and

ℓ̃θ,bl = ℓ̇θ,bl − Πℓ̇θ,bl , where Π denotes the projection on cl T , the closure of T . We compute

these projections analytically to obtain

ℓ̃θ,αl
(Wi) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vi)Aj•Vi +
K∑
k=1

ζαl,k,k [τk,1Ak•Vi + τk,2κ(Ak•Vi)]

ℓ̃θ,σl
(Wi) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕk(Ak•Vi)Aj•Vi +
K∑
k=1

ζσl,k,k [τk,1Ak•Vi + τk,2κ(Ak•Vi)]

ℓ̃θ,bl(Wi) =
K∑
k=1

[−Ak•Db,l] [(Xi − EXi)ϕk(Ak•Vi)− EXi (ςk,1Ak•Vi + ςk,2κ(Ak•Vi))]

where ζαl,k,j and ζ
σ
l,k,j are defined in Assumption 1, Db,l = ∂B/∂bl and ϕk(x) = ∂ log ηk(x)/∂x.

Further,

τk =M−1
k

(
0

−2

)
, ςk =M−1

k

(
1

0

)
, where Mk =

(
1 Eθ(Ak•Vi)

3

Eθ(Ak•Vi)
3 Eθ(Ak•Vi)

4 − 1

)
.

The derivations that lead to these expressions are given the appendix where Lemma 3 pro-

7Each score function lies in L2(Pθ), which is the Hilbert space under consideration here.
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vides the formal statement. The expressions show that the effective scores depend on the log

density scores ϕk, i.e. the non-parametric part stemming from ηk, and the third and fourth

moments of the errors Ak•Vi via the vectors τk and ςk, for k = 1, . . . , K.

For step (2) we will project the effective scores for α on the space spanned by the effective

scores for β = (b, σ). Since the latter space is finite dimensional this projection takes a

standard form. First, we collect and partition the effective scores as follows

ℓ̃θ(Wi) =

[
ℓ̃θ,α(Wi)

ℓ̃θ,β(Wi)

]
and ℓ̃θ,β(Wi) =

[
ℓ̃θ,σ(Wi)

ℓ̃θ,b(Wi)

]
,

where ℓ̃θ,α = (ℓ̃θ,α1 , . . . , ℓ̃θ,αLα
)′, ℓ̃θ,σ = (ℓ̃θ,σ1 , . . . , ℓ̃θ,σLσ

)′ and ℓ̃θ,b = (ℓ̃θ,b1 , . . . , ℓ̃θ,bLb
)′ are the

Lα×1, Lσ×1 and Lb×1 vectors that collect the effective score functions. With this notation

we define the effective information matrix by

Ĩθ = Eℓ̃θ(Wi)ℓ̃
′
θ(Wi) with partitioning Ĩθ =

(
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

)
.

The effective score function for α with respect to β and η can now be computed by the

second projection (e.g. Bickel et al., 1998, p. 74)

κ̃θ(Wi) = ℓ̃θ,α(Wi)− Ĩθ,αβ Ĩ
−1
θ,ββ ℓ̃θ,β(Wi) . (7)

The corresponding effective information matrix is given by

Ĩθ = Ĩθ,αα − Ĩθ,αβ Ĩ
−1
θ,ββ Ĩθ,βα . (8)

We note that the effective score function κ̃θ(Wi) and the effective information matrix Ĩθ can

be evaluated at any parameters θ = (α, β, η).

Effective score and information matrix estimation The effective scores and infor-

mation depend on unknown nuisance parameters, such as the log density scores ϕk and the

moment vectors τk and ζk. To implement the score test we replace these parameters by

appropriate estimates. As we show in the appendix, consistent estimators for ℓ̃θ(Wi) are

ℓ̂γ(Wi) =

[
ℓ̂γ,α(Wi)

ℓ̂γ,β(Wi)

]
and ℓ̂γ,β(Wi) =

[
ℓ̂γ,σ(Wi)

ℓ̂θ,b(Wi)

]
,
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where the components are given by

ℓ̂γ,αl
(Wi) =

K∑
j,k=1,j ̸=k

ζαl,k,jϕ̂k(Ak•Vi)Aj•Vi +
K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ℓ̂γ,σl
(Wi) =

K∑
j,k=1,j ̸=k

ζσl,k,jϕ̂k(Ak•Vi)Aj•Vi +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ℓ̂γ,bl(Wi) =
K∑
k=1

[−Ak•Db,l][(Xi − X̄)ϕ̂k(Ak•Vi)− X̄(ς̂k,1Ak•Vi + ς̂k,2κ(Ak•Vi))]

, (9)

with X̄ = n−1
∑n

i=1Xi. The coefficients τ̂k = (τ̂k,1, τ̂k,2)
′ and ς̂k = (ς̂k,1, ς̂k,2)

′ are given, for

k = 1, . . . , K, by

τ̂k = M̂−1
k

(
0

−2

)
, ς̂k = M̂−1

k

(
1

0

)
, M̂k =

(
1 1

n

∑n
i=1(Ak•Vi)

3

1
n

∑n
i=1(Ak•Vi)

3 1
n

∑n
i=1(Ak•Vi)

4 − 1

)
. (10)

The estimates for the effective scores can be evaluated at any γ = (α, β), but do not depend

on ϕk, τk, ςk or EXi as these components have been replaced by estimators ϕ̂k, τ̂k, ς̂k and

X̄. These estimators may depend on γ and the index n, though this is left implicit in the

notation.

Density score estimation The log density score estimates ϕ̂k(·) needed for computing

(9) can be obtained in different ways and our preferred approach is based on using B-splines

as in Jin (1992) and Chen and Bickel (2006). We can define these estimates by

ϕ̂k(z) = ψ̂′
kbk(z) , with ψ̂k = −

[
n∑

i=1

bk(Ak•Vi)bk(Ak•Vi)
′

]−1 n∑
i=1

ck(Ak•Vi) , (11)

where z is the argument of the function, e.g. z = Ak•Vi in (9), bk(z) = (bk,1(z), . . . , bk,Bk
(z))′

is a collection of Bk cubic B-splines and ck(z) = (ck,1(z), . . . , ck,Bk
(z))′ are their derivatives:

ck,i(z) =
dbk,i(z)

dz
for each i = 1, . . . ,Bk, see de Boor (2001) for more details on B-splines.8

In practice we rely on equally spaced knots with upper and lower end points taken to be

the 95th and 5th percentile of the samples {ϵi}ni=1 adjusted by log(log(n)). We use Bk = 6

splines in our main simulations below and investigate the sensitivity of this choice.

Given the estimates of the effective scores we estimate the effective information matrix,

8Further details as required for the construction in this paper are given in Section S5 in the supplementary
material. For the asymptotic theory, Bk will be required to (slowly) diverge with n. In the main text we
omit the dependence of Bk and bk on n in the notation.
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which is the variance matrix of the effective score function, as

Îγ =
1

n

n∑
i=1

ℓ̂γ(Wi)ℓ̂γ(Wi)
′ with partitioning Îγ =

[
Îγ,αα Îγ,αβ

Îγ,βα Îγ,ββ

]
. (12)

With these estimates we can compute the estimates for the effective score of α with respect

to β and η, i.e. κ̃θ(Wi) as defined in (7), and the corresponding information matrix (8).

κ̂γ(Wi) = ℓ̂γ,α(Wi)− Îγ,αβ Î
−1
γ,ββ ℓ̂γ,β(Wi) and Îγ = Îγ,αα − Îγ,αβ Î

−1
γ,ββ Îγ,βα . (13)

Importantly, Ĩθ may not be positive definite in our setting. For instance, when the densities

ηk correspond to the Gaussian density, Ĩθ is singular, see the discussion preceding Lemma

S15 in the supplementary material.

Semi-parametric score statistic With κ̂γ and Îγ we can define the semi-parametric

score test statistic for the LSEM model as function of γ = (α, β) and the observations Wi by

Ŝγ =

(
1√
n

n∑
i=1

κ̂γ(Wi)

)′

Ît,†
γ

(
1√
n

n∑
i=1

κ̂γ(Wi)

)
, (14)

where Ît,†
γ denotes the generalized inverse of the eigenvalue truncated effective information

matrix Îγ (cf. Lütkepohl and Burda, 1997). Formally,

Ît
γ = Û Λ̂(ν1/2n )Û ′ , (15)

where Λ̂(ν
1/2
n ) is a diagonal matrix with the ν

1/2
n -truncated eigenvalues of Îγ on the main

diagonal and Û is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂i}Li=1 denote the non-increasing eigenvalues of Îγ, then the (i, i)th element of Λ̂(ν
1/2
n ) is

given by λ̂i1(λ̂i ≥ ν
1/2
n ). We discuss the choice for the truncation parameter in more detail

below.

Equations (9)-(15) define the semi-parametric score statistic for the LSEM model (3) for

a given parameter vector γ = (α, β). To test the null hypothesis (5) we will evaluate this

test statistic at α = α0, i.e. fixing the possibly unidentified parameters under the null, and

at β̂, which can be any
√
n consistent estimate for β. Let γ̂ = (α0, β̂). In our simulations,

we use ordinary least squares estimates for σ and b = vec(B), or one-step efficient estimates

following van der Vaart (2002, Section 7.2). In our theoretical section below we show that

under suitable assumptions the score statistic will converge to a χ2 limit. Specifically, we
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prove that under H0 for any a ∈ (0, 1) we have

lim
n→∞

P (Ŝγ̂ > cn) ≤ a , (16)

where cn is the 1 − a quantile of the χ2
rn distribution with rn = rank(Ît

γ̂). Importantly, as

we show in section 4 this result does not rely on any assumptions regarding the shape of

the densities η, i.e. we do not need to assume that η is non-Gaussian. Only conventional

moment assumptions and some regularity conditions on the densities are required. The

following algorithm summarizes the complete implementation.

Algorithm: Effective score test for LSEM

1 Obtain
√
n-consistent estimates β̂ = (σ̂, b̂), residuals V̂i = Yi − B̂Xi and

evaluate all quantities in steps 2-5 at γ̂ = (α0, β̂);

2 For k = 1, . . . , K, compute ϕ̂k(Âk•V̂i) from (11) with Â = A(α0, σ̂);

3 Compute the effective scores ℓ̂γ̂(Wi) from (9) and the information matrix Îγ̂

from (12);

4 Compute κ̂γ̂(Wi) and Îγ̂ from (13) and Ît
γ̂ from (15) using truncation param-

eter ν
1/2
n ;

5 Compute the score statistic Ŝγ̂ from (14) and reject H0 : α = α0 if Ŝγ̂ > cn,

where cn is the 1− a quantile of the χ2
rn distribution with rn = rank(Ît

γ̂).

The truncation parameter ν
1/2
n in step 4 is a tuning parameter for which the theoretical

requirements are formalized in Assumption 3 below. In practice, we recommend a small tun-

ing parameter (e.g. less than ν
1/2
n = 10−5) as our simulations suggest that the null rejection

probability is well controlled for any such choice.9 In practice the simplest implementation

is to use a pseudo inverse function directly which implicitly truncates at machine precision.

Nevertheless we recommend that researchers applying the proposed approach explore the

performance of different choices of ν
1/2
n in simulation experiments designed to replicate the

application at hand.

The algorithm highlights that the computational cost for evaluating the semi-parametric

score statistic Ŝγ̂ is modest; effectively one only needs to compute K B-spline regressions

9See Section S7.1 in the supplementary material for simulation results with different truncation values.
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to obtain the log density scores. Importantly, this implies that the algorithm can often

implemented without relying on numerical optimization routines.10 Confidence sets for α

can be constructed by inverting the score statistic over a range of values for α0.

For some parametrizations of A(α, σ), the parameter of economic interest could be a

function of both α and σ, or more generally, a function of α and β = (b, σ). In these set-

tings, the algorithm can be used in combination with the Bonferroni approach discussed in

Granziera, Moon and Schorfheide (2018) to construct confidence intervals for such functions.

Intuitively, this approach amounts to constructing a confidence set for f(α0, β̂) with con-

fidence level q2 for each fixed α0 for which the score test does not reject at level q1, with

q1 + q2 = a. Then, taking the union over the constructed sets for f(α0, β̂) yields a 1 − a

confidence set for f(α, β).

4 Asymptotic theory

In this section we present our main theoretical results. We start by carefully spelling out

the regularity conditions that are required. After this we discuss the properties of the test.

We show that (i) under weak identification asymptotics, the null rejection probability of the

test does not exceed its nominal level asymptotically and (ii) under strong identification it

attains well known power bounds for various classes of tests.

4.1 Assumptions

We assume that we observe a random sample {Wi}ni=1 = {(Y ′
i , X

′
i)

′}ni=1 from model (3) where

the underlying components satisfy the following.

Assumption 2. For ϵi = (ϵi1, . . . , ϵiK)
′ in model (3), each component ϵik has a continuously

differentiable root density (with respect to Lebesgue measure on R). We write the density as

ηk with log density score ϕk(x) = ∂ log ηk(x)/∂x. We assume that for all k = 1, . . . , K and

some δ > 0

1. Eϵik = 0, Eϵ2ik = 1, Eϵ4+δ
ik <∞, E(ϵ4ik)− 1 > E(ϵ3ik)2, and Eϕ4+δ

k (ϵik) <∞;

2. Eϕk(ϵik) = 0, Eϕk(ϵik)ϵik = −1, Eϕk(ϵik)ϵ
2
ik = 0 and Eϕk(ϵik)ϵ

3
ik = −3;

3. ϵik is independent of ϵil for all k ̸= l;

10Numerical optimisation may be necessary to compute β̂, depending on the chosen parametrisation, but
is not necessary beyond this.
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4. η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such that if

X̃i ∼ η0, then EX̃iX̃
′
i is positive definite and E[|X̃i,l|4+δ] <∞ for all l = 1, . . . , d− 1;

5. ϵi and X̃i are independent.

The first part normalizes the errors to have mean zero, variance one and finite four+δ

moments,11 hence ruling out heavy tailed errors.12 Additionally, we require the log density

scores ϕk(x) = ∂ log ηk(x)/∂x evaluated at the errors to have finite four+δ moments. The

second part simplifies the construction of the effective score functions. Whilst this may at

first glance appear a strong condition, Lemma S16 in the supplementary material shows that

if the first part holds, then a simple sufficient condition is that the tails of the densities ηk

converge to zero at a polynomial rate.13 The third part imposes that the components of

ϵi are independent. Part four imposes some structure on X̃i that allows us to identify B;

notably positive definite second moments and four+δ finite moments are required. Part five

requires the explanatory variables and errors to be independent. This can be relaxed by

requiring the moment assumptions in 2 to hold conditional on X̃i. In this setup, our general

theory as outlined in this section would continue to be valid though the resulting effective

score function would take a different form.

Most important is what is not in Assumption 2: there is no condition that imposes that

a certain number of components of ϵi have a (sufficiently) non-Gaussian distribution.

The third assumption that we impose is only required for the estimation of the log density

scores ϕk(x) = ∂ log ηk(x)/∂x using B-spline regressions and can be appropriately replaced

when a different density score estimator is used.14 For notation purposes, let ΞL
k,n and ΞU

k,n

denote the lower and upper endpoints of the cubic B-splines for ϕk(x) for k = 1, . . . , K. In

practice, we select these points as the lower 5th and upper 95th percentiles of the samples

{Ak•Vi}ni=1 adjusted by log log n, see the implementation section 3.

Assumption 3. Let νn be such that ν2n,p = o(νn) with p := min{1+δ/4, 2} and νn,p = n(1−p)/p

if p ∈ (1, 2) or νn,p = n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2. Let ϕk,n := ϕk1[ΞL
k,n,Ξ

U
k,n]

and ∆k,n := ΞU
k,n − ΞL

k,n and suppose that for all k = 1, . . . , K, [ΞL
k,n,Ξ

U
k,n] ↑ Ξ̃ ⊃ supp(ηk)

and δk,n ↓ 0

11E(ϵ4ik)− 1 ≥ E(ϵ3ik)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ϵ4ik)− 1 > E(ϵ3ik)2 rules out (only) cases where 1, ϵik and ϵ2ik are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

12Heavy tailed errors in ICA and SVAR models have recently been considered in Davis and Ng (2022) and
Davis and Fernandes (2022), but an inferential theory remains to be developed.

13See Example S1 in the supplementary material for an explicit example of a density which satisfies the
first part of the assumption but not the second.

14See Assumption 4 for conditions on any alternative density score estimator under which our Theorem 1
continues to hold.
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(i) P (ϵik /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (∥ηk∥∞ <∞) and differentiable, with a bounded derivative: ∥η′k∥∞ <∞;

(iv) For each n, ϕk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ∥ϕ

(3)
k,n∥2∞δ6k,n =

o(νn);
15

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞL
k,n,Ξ

U
k,n]

|ηk(t)| ≥ cδk,n.

First, the assumption provides conditions on the truncation rate ν
1/2
n that is needed for

the truncation of the eigenvalues in (15). This rate is split into two parts. The “slow” rate

n(1−p)/p (for p ∈ (1, 2)) is always sufficient given assumption 2, but if ϵik has finite eighth

moments the faster rate applies.

Part (i) imposes that the tails of ϵik decay to zero sufficiently fast.16 Part (ii) ensures that

the number of knots does not grow to fast relative to the sample size (and the truncation

rate). Part (iii) requires the density and its derivative to be bounded. Part (iv) requires the

existence of the third derivatives of ϕk and that the rate of increase of the third derivative is

not too great. Part (v) ensures that the density is bounded away from zero on [ΞL
k,n,Ξ

U
k,n].

Overall, these assumptions are similar to those adopted in Chen and Bickel (2006), with

two key differences.17 Firstly, Chen and Bickel (2006) require the conditions to hold for

the functions v 7→ ϕk(Ak•v) (rather than ϕk), uniformly over shrinking balls (at rate n−1/2)

around A. In our setting we are only interested in testing as consistent estimation is ruled

out by the possible lack of identification, hence we only require the conditions to hold for

the functions ϕk. Secondly, unlike Chen and Bickel (2006), we require convergence at a

rate νn which satisfies certain decay conditions. This is due to the fact that we may have

a singular effective information matrix and in order to obtain a consistent estimate of the

Moore – Penrose inverse of this matrix, we require knowledge of the rate of convergence of

our estimator.

4.2 Main results

In this section we formally state our main results for the semi-parametric score test Ŝγ̂.

First, instead of evaluating the score test at the
√
n-consistent estimates γ̂ = (α0, β̂) we will

15The differentiability and continuity requirements at the end-points are one-sided.
16The required speed of decay is linked to the truncation rate.
17Cf. their conditions C3, C5 – C7, p. 2834.
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evaluate the score test at its discretized version γ̄ = (α0, β̄n). Formally, let Gn = n−1/2CZLβ

for some C > 0 and define β̄n as a new version of β̂ that replaces its value with the closest

point in Gn. Note that this changes each coordinate of β̂ by a quantity which is at most

O(n−1/2), hence the
√
n-consistency is retained by discretization. Since the constant C can

be chosen arbitrarily small this change has no practical relevance for the implementation of

the test.

The advantage of relying on discretized estimates is that it simplifies the proof of the

main result. Specifically, it removes the need to show uniform convergence between the

effective scores evaluated at β̂ and β. The discretization trick is due to Le Cam (1960) and

is widely used in statistics, see the detailed discussion in Le Cam and Yang (2000, Section

6.3), or van der Vaart (1998, page 72).18

The following theorem provides the main result.19

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold and that (α0, β) is an interior point

of A×B. Let rn = rank(Ît
γ̄) and denote by cn the 1− a quantile of the χ2

rn distribution, for

any a ∈ (0, 1). Then for any sequence

θn = (α0, β + dn/
√
n, η(1 + hn/

√
n) , dn ∈ D⋆ , hn ∈ H⋆ ,

with D⋆ a bounded subset of RLβ and H⋆ a compact subset of H, we have

lim sup
n→∞

P n
θn(Ŝγ̄ > cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0 where θ0 = (α0, β, η). The notation P n
θn

indicates the

n-fold product of the measure Pθn, i.e. the distribution of the data W1, . . . ,Wn under θn.

Theorem 1 shows that the test is locally robust in that its null rejection probability

is no greater than the nominal a under any local sequence θn (consistent with the null).

Under such sequences, the densities of the structural shocks (i.e. ϵik) may converge to the

Gaussian density at a
√
n rate, i.e. these are local-to-Gaussian sequences. Studying the

behavior of tests under these local-to-Gaussian sequences is the natural counterpart (in the

model we study) to studying the performance of tests under so-called “weak identification

asymptotics”, as has been considered in many settings (e.g. Staiger and Stock, 1997; Stock

and Wright, 2000; Moreira, 2003; Kleibergen, 2005; Andrews and Mikusheva, 2015). The

key difference in our setting is that the identification failure occurs due to the value of an

18It has also been adopted in econometrics, see Cattaneo, Crump and Jansson (2012) for instance.
19The set H which apears in the statement of Theorem 1 is defined in Section 3. See equation (6) and the

paragraph following it.
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infinite dimensional nuisance parameter.

This local robustness follows from the fact that the test statistic Ŝγ̄ is locally regular, i.e.

it attains its limiting distribution (under the null) in a locally uniform manner. This property,

in turn, follows from the orthogonalization with respect to (all of) the nuisance parameters

in the definition of the effective score function.20 This orthogonalization ensures that the

test statistic is insensitive to small deviations in the nuisance parameters and therefore that

its limiting distribution does not change when the limit is taken along sequences of local

alternatives consistent with the null hypothesis.

The result of Theorem 1 can be also written as

lim sup
n→∞

sup
θ∈Θ0,n

P n
θ (Ŝγ̄ > cn) ≤ a ,

where

Θ0,n = {(α0, β + d/
√
n, η(1 + h/

√
n) : d ∈ D⋆, h ∈ H⋆} .

This formulation allows us to highlight a difference between our local uniformity result, which

is over local sets Θ0,n, and a more demanding global uniformity result in which the supremum

would be taken over Θ0 = {(α0, β, η) : β ∈ B, η ∈ H}. We emphasise that Theorem 1 does

not establish such a result.21

Efficiency under strong identification Importantly, the local robustness of the score

test does not come at the expense of power loss under strong identification. In particular,

the test φn := 1{Ŝγ̄ > cn} is semiparametrically efficient when Ĩθ is nonsingular.22 Here we

provide a brief heuristic discussion of this point; proofs that these power bounds are attained

by φn can be found in Section S6 of the supplementary appendix.

For the parameters θ = (α, β, η) we consider local alternatives of the type

θn(q, d, h) =
(
α + q/

√
n, β + d/

√
n, η(1 + h/

√
n)
)
. (17)

First suppose that α is scalar and Ĩθ > 0. Then the asymptotic power of the proposed test

is against the local alternatives in (17) is

lim
n→∞

P n
θn(q,d,h)φn = 1− Φ

(
za/2 − Ĩ1/2

θ q
)
+ 1− Φ

(
za/2 + Ĩ1/2

θ q
)
, (18)

20In conjunction with the ULAN property shown to hold in Lemma 2.
21For models where identification failures are determined by a finite dimensional η, global uniformity

conditions are derived in Andrews and Cheng (2012, 2013) and Andrews, Cheng and Guggenberger (2020).
For the case where η is infinite dimensional much work remains to be done.

22Nonsingularity may fail to hold when multiple components of ϵi are Gaussian; see Lemma S15.
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where Φ the standard normal CDF and za/2 the 1−a/2 quantile of theN (0, 1). This coincides

with the (local asymptotic) power bound for locally asymptotically unbiased two sided tests

of q = 0 against q ̸= 0 (cf. Theorem 2 in Choi, Hall and Schick (1996)).23,24

If instead α is multidimensional and Ĩθ is positive definite, then the asymptotic power of

the proposed test is against the local alternatives in (17) is

lim
n→∞

P n
θn(q,d,h)φn = 1− P

(
χ2
Lα
(q′Ĩθq) ≤ ca

)
, (19)

where χ2
r(u) denotes a random variable with a non-central χ2 distribution with r degrees of

freedom and non-centrality parameter u and ca is the 1 − a quantile of the (central) χ2
Lα

distribution. This coincides with the (local asymptotic) power bound for asymptotically

rotation invariant tests as developed in Section 5 of Choi, Hall and Schick (1996) (see their

Theorem 3).25,26

These power bounds make φn attractive in scenarios where there is no explicit direction

in which one want to maximize power. When such directions are given alternative test

statistics, also based on the effective score function, can be considered (e.g. Bickel, Ritov

and Stoker, 2006). Maximin optimality results which permit singular Ĩθ matrices can be

found in Lee (2023) for related tests in general semi-parametric models.

5 Simulation results

In this section we study the finite sample properties of the semi-parametric score test Ŝγ̂. We

study the empirical rejection frequency of the test under different data generating processes

23One can alternatively see this by approximating the infinite dimensional model by a sequence of finite-
dimenional models for which the corresponding result is well known and then taking limits. Cf. the proof of
Theorem 25.44 in van der Vaart (1998).

24That the sequence of tests (φn)n∈N is itself locally asymptotically unbiased is clear from (18).
25That the sequence of tests (φn)n∈N is itself asymptotically rotation invariant is clear from (19): the

limiting power function is that of the test φ(Z) := 1{Z ′Z > ca} for Z ∼ N (Ĩ1/2
θ q, I). This test is rotation

invariant since for any rotation matrix R and any z ∈ RLα one has φ(R′z) = 1{z′RR′z > ca} = 1{z′z >
ca} = φ(z).

26Related, the asymptotic maximin power of φn against the alternatives in (17) is

lim
n→∞

inf
(q,d,h)∈K⋆

u

Pn
θn(q,d,h)

ϕn = 1− P
(
χ2
Lα

(u) ≤ ca
)
, (20)

where K⋆
u is any compact subset of

Ku :=
{
(q, d, h) ∈ RLα × RLβ ×H : q′Ĩθq ≥ u

}
.

which also coincides with the (local asymptotic) maximin power bound (cf. the parametric case in Theorem
13.5.5 of Lehmann and Romano (2005)).
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and compare its performance to several alternatives that have been proposed in the literature.

We first study the simple model of section (2) after which we consider the general linear

simultaneous equations model (3). The supplementary material provides additional results.

5.1 Baseline model

We start by drawing independent samples from model (1), which we restate for convenience

Yi = A−1ϵi , i = 1, . . . , n .

We take Yi to be K × 1 and consider K = 2, 3 and K = 5. The sample size is taken

as n = 200, 500 or n = 1000. We fix ϵi1 to have a standard Gaussian density and consider

different densities for ϵik, with k = 2, . . . , K. The non-Gaussian densities are either Student’s

t or mixtures of normals taken from Marron and Wand (1992). Figure 3 provides an overview.

The matrix of interest A is taken as a rotation matrix and parametrized by the Cayley

transformation of a skew-symmetric matrix (e.g. Gouriéroux, Monfort and Renne, 2017):

A = A(α) = (I − Ω(α))(I + Ω(α))−1 ,

where Ω(α) is a skew-symmetric matrix (i.e. Ω(α)′ = −Ω(α)) parameterized by α which we

sample at random from α ∼ N(0, ILα).

In this setting there are no additional nuisance parameters which allows us to concentrate

on the consequences of weak non-Gaussianity on the semi-parametric score test and some

alternative tests that have been proposed in the literature. In the simulation designs below

we include additional finite dimensional nuisance parameters (i.e. β = (b, σ)) and investigate

whether their inclusion alters the empirical rejection frequency of the test.

For each specification we simulate S = 5, 000 datasets and for each we compute the

semi-parametric score statistic Ŝγ̂ as defined in equation (14) following the Algorithm given

in Section 3.27 We implement the log density score estimator (11) using B = 4, 6 or 8 cubic

splines and truncate the effective information matrix at machine precision, i.e. ν
1/2
n = 10−308.

In Table 2 we show the empirical rejection frequencies under the null corresponding to

the Sγ̂ test with nominal level 0.05. The columns correspond to the different choices for

the densities ϵik for k ≥ 2. The first column corresponds to the case where all densities

are Gaussian and the expected likelihood takes the same value for all α ∈ RLα , i.e. α is

unidentified. Nonetheless, we find that the empirical rejection frequency of the score test is

27To be specific, since the model does not contain any finite dimensional nuisance parameters step 1 in
the algorithm can be skipped and the score statistic is simply evaluated at α0.
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always close to the nominal level. This holds regardless of the sample size n, the dimension

of the model K and the number of cubic splines B.

Second, when the densities for k ≥ 2 are non-Gaussian the empirical rejection frequency

remains approximately at the nominal level. Specifically, columns 2-4 show the results for

the case where ϵik follows a Student’s t distribution with decreasing degrees of freedom

(ν = 15, 10, 5). No matter how close we get to the Gaussian density the empirical rejection

frequency remains approximately at the nominal level. Columns 5-10 show that similar

properties hold for a variety of mixture distributions. Even for complicated skewed bi-modal

densities (e.g. columns 8-10) the Sγ̂ test has empirical rejection frequency close to nominal

regardless of the sample size.

Third, overall the number of cubic splines used has little influence on the results. A close

inspection reveals that when the number of cubic splines is equal to four the test becomes

mildly conservative for some densities, therefore we use B = 6 cubic splines in the remaining

exercises.

Overall, the asymptotic approximation in Theorem 1 seems to provide a good approxima-

tion for the finite sample behavior of the semiparametric score test, at least for the densities

shown in Figure 3.

5.2 Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches

based on (psuedo) maximum likelihood and the generalized method of moments. We concen-

trate on evaluating different tests based on their empirical rejection frequency in the vicinity

of Gaussianity.28

Alternative tests Conceptually, there are two types of alternative tests that we consider:

(i) tests that rely on estimates for α and (ii) tests that fix α = α0 under the null. Clearly,

from our intuitive discussion in Section 2 it follows that we expect tests that fix α under the

null to perform relatively well.

In category (i) we consider the standard maximum likelihood Wald (Wmle) and likelihood

ratio (LRmle) tests based on the Student’s t density for ϵk. For densities 2-4 in Figure 3 these

tests correspond to exact maximum likelihood tests, with the caveat that when the degrees

of freedom increases the parameters α become weakly identified, or not-identified. For all

other densities these tests are mis-specified.

28The recent simulation studies of Herwartz, Lange and Maxand (2019) and Moneta and Pallante (2022)
provide further simulation evidence for existing methods, also focusing on estimation accuracy.
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In addition, we consider the psuedo-maximum likelihoodWald test (Wpmle) from Gouriéroux,

Monfort and Renne (2017). This test is asymptotically valid for a broader range of true dis-

tribution functions and amount to fixing the functional form of the densities η1, . . . , ηK . We

follow the implementation of Gouriéroux, Monfort and Renne (2017) and choose the Stu-

dents t density with five degrees of freedom as the pseudo-likelihood and compute the Wald

statistic based on this density.

Finally, we consider the recently developed GMM method of Lanne and Luoto (2021),

which relies on higher order moments to identify the parameters α. We use Eϵ2ikϵij = 0,

Eϵ3ikϵij = 0 and Eϵ2ikϵ2ij = 1 as moment conditions for all j ̸= k and j, k = 1, . . . , K. The GMM

likelihood ratio test is then computed as the rescaled difference between the unrestricted and

restricted J-statistics, based on the 2-step GMM estimator (LRgmm), see Lanne and Luoto

(2021) for details.29

In category (ii) we consider tests which fix α = α0 under the null. Specifically, we include

the standard LM test (LMmle) based on the Student’s t density where the degrees of freedom

parameter is estimated from the data. Second, we consider the pseudo-maximum likelihood

version of the LM test (LMpmle) based on Gouriéroux, Monfort and Renne (2017), which fixes

the degrees of freedom at five. Finally, we consider the GMM-based identification robust

S-statistic (Sgmm) of Stock and Wright (2000), which was recently considered in Drautzburg

and Wright (2023) in the context of structural VAR models with non-Gaussian errors. We

use the same moment conditions as considered in Drautzburg and Wright (2023) for the

LMgmm test.

Null rejection frequency comparison We compare the empirical rejection frequencies

of the different tests for the simulation designs described in Section 5.1. These are shown

in Table 3 for the case where K = 2 and n = 200, 500, 1000. Overall we find, perhaps not

surprisingly, that all tests in category (i) do not demonstrate the correct empirical rejection

frequency when the true density is close to Gaussian nor when the corresponding method is

based on a mis-specified model. This shows that tests based on estimates for α are generally

unreliable. Tests in category (ii) overall demonstrate empirical rejection frequencies close to

the nominal level.

More specifically, we find that the Wald tests (Wmle and Wpmle) tend to over-reject quite

severely whilst the standard likelihood ratio test (LRmle) tends to under-reject for most

densities, especially in the vicinity of the Gaussian density, as ought to be expected given

the earlier evidence in shown in Figure 1. Finally, the GMM likelihood ratio test (LRgmm)

29Note that lower order moments are not required as the baseline model, Yi = A−1ϵi with A a rotation
matrix, implies that the observations have mean zero and unit variance.
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also over-rejects, which confirms findings in Lanne and Luoto (2021) where the LRgmm also

over-rejects when the densities of the structural shocks are close to Gaussian.

In the second category the semi-parametric score test Ŝγ̂ (as proposed in this paper)

and the pseudo maximum likelihood LM test (LMpmle), inspired by Gouriéroux, Monfort

and Renne (2017), both have near perfect empirical rejection frequencies across all densities.

The standard LM test (LMmle) also performs reasonably well, but when the functional form

of the true densities is very different from the Student’s t density (e.g. separate bi-modal,

column 9) the test tends to under-reject.30 Finally, the GMM based S test (Sgmm) tends to

over-reject for small samples, but for large samples it generally shows correct size except for

densities with moderately heavy tails such as the t(5) density (column 4). In these cases the

Sgmm over-rejects which can be understood when realizing that the GMM approach requires

eight finite moments for inference when based on fourth-order moment restrictions. The t(5)

density does not have eight finite moments.

In sum, we recommend avoiding statistics that are based on estimates for α as these are

overall unreliable when the shock distributions are close to Gaussian. All tests that fix α

under the null perform at least reasonably well.

Power comparison We compare the power of all tests that fix α under the null, that is

Ŝγ̂, LM
mle, LMpmle and Sgmm.

We consider the case where K = 2 and n = 1000.31 In this setting α is a scalar parameter

and we fixed the true value at 0 (an arbitrary choice). Figure 4 shows the empirical rejection

frequencies when we vary α around α = 0. Each point on the curve is based on S = 5, 000

simulations.

Two main findings stand out. First, for the Student’s t densities t(15), t(10) and t(5)

(panels 2-4) the standard LM test (LMmle) shows the highest power. This is not surprising

as for these data generating processes the LMmle test is correctly specified and hence takes

advantage of fitting the true densities using only a scalar parameter. That said, the semi-

parametric score test (Ŝγ̂) and the pseudo maximum likelihood LM test (LMpmle) come

reasonably close in terms of power.

Second, for all other densities, i.e. different mixtures of normals in panels 5 – 10, the semi-

parametric score test (Ŝγ̂) shows the highest power. Sometimes the difference with the other

tests is not very large, but for instance for bi-modal densities (panels 8-10) the differences

are substantial. Overall, the good power of the Ŝγ̂ test corresponds to the theoretical finding

that for non-singular information matrices the test is locally asymptotically uniformly most

30Recall here that this test is based on a misspecified density.
31Power comparisons for different n can be found in the supplementary material.
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powerful in the class of (locally asymptotically) unbiased tests.

Besides the Ŝγ̂ test, we note that the pseudo maximum likelihood LM test and the GMM

based S test shows quite promising power for most of the densities considered. Neither

of these dominates the other. The caveat for the GMM test is that it is size-distorted for

moderately heavy tails (panel 4).

5.3 Linear simultaneous equations model

Next, we discuss the simulation results for the general linear simultaneous equations model

(3). The dimensions of the design are similar as above with the addition that we consider

d = 2, 3 for the number of covariates. We now parametrize A(α, σ)−1 = Σ1/2(σ)R(α) as in

example 3, where Σ1/2 is lower triangular and the rotation matrix R remains to be specified

by the Cayley transform. The explanatory variables are drawn from the standard normal

distribution.

The vector of finite dimensional nuisance parameters β now includes σ = vech(Σ1/2) and

b = vec(B). Our main theoretical result in Theorem 1 permits any
√
n-consistent estimator

of β. Obviously, ordinary least squares estimates are attractive for their simplicity, but given

the non-normality of the structural shocks these estimators may be improved. Therefore we

also consider estimating β by one-step-efficient estimates (e.g. van der Vaart, 2002, Section

7.2), which are easy to compute here since the effective score of β is computed anyway to

construct the score test.

Similar to before, the first error ϵi,1 follows a Gaussian distribution and the different

densities from Figure 3 are assigned to the other error terms. For each specification we

simulate S = 5, 000 datasets and for each sample we compute the semi-parametric score

statistic using the Algorithm in Section 3.

Null rejection frequency results The empirical rejection frequencies are shown in Tables

4 and 5 for the OLS and one-step efficient estimates for β, respectively.

We find that for all densities the rejection frequencies of the Ŝγ̂ test are generally close

to the nominal level. That said, there is more variation in the empirical rejection frequen-

cies compared to Table 2, indicating that the estimation of the finite dimensional nuisance

parameters does have consequences.

Starting with Table 4 where β̂ is estimated by OLS. We find that the empirical rejection

frequency of Ŝγ̂ is (approximately) the same regardless of how close the densities of ϵik are

to the Gaussian density. Specifically, moving from columns 1-4 (i.e. from Gaussian to t(5))

we see virtually no changes in the rejection frequencies. This holds for all specifications
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considered and highlights the main point of this paper: the semi-parametric score test yields

reliable inference even when α is not, or poorly, identified.

Depending on the dimension of β we do find distortions in the empirical rejection fre-

quencies for small sample sizes, most notably when K = 5 and n = 200. In this setting β

is of dimension 20 or 25 depending on d = 2, 3, and we see that the test often over-rejects.

This does not hold for all densities considered, but for Gaussian, Student’s t and kurtotic

unimodal densities the test over-rejects. When n increases this over-rejection vanishes.

For the one-step efficient estimator for β the results are shown in Table 5. We find that on

average the empirical rejection frequencies are larger when compared to the OLS estimator.

Notably, when n is small over-rejection becomes more severe. Again, we find that this holds

uniformly across all considered densities, i.e. the distortions do not depend on being close

to Gaussianity, and the empirical rejection frequencies improve when n increases.

Power results Next, we investigate the power of the Ŝγ̂ test for the LSEM model. We

again consider the case where K = 2, d = 2 and n = 1000, which allows us to compare the

results with those for the baseline model. The power curves are shown in Figure 5 for both

OLS and one-step estimates for β.

First, when comparing Figure 5 to the case without nuisance parameters (i.e. Figure 4)

we find that the power of the test is reduced when we include nuisance parameters. Second,

the power of the test using the one-step efficient estimates (dotted blue line) is higher when

compared to the same test evaluated at OLS estimates. This holds for all densities considered.

Based on these results we recommend using OLS estimates for β when the sample size

is small (e.g. n = 200, 500), but for larger sample sizes the one-step efficient estimates are

preferable.

6 Returns to schooling

In this section, we adopt the semi-parametric score test to construct confidence bands for

the effect of education on wages. To do so, we consider a special case of the LSEM model

(3): the linear instrumental variable (IV) model, which has been the workhorse model in the

returns to schooling literature (e.g. Card, 2001). We show that the presence of non-Gaussian

errors allows us to use the score test to (i) obtain tighter confidence bands for the returns to

schooling under the assumption that the instrument is exogenous and (ii) test and correct

for possibly endogenous instruments.

We start by showing how the standard linear IV model with control variables can be

written as a special case of the general model (3). Let yi be the dependent variable of
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interest, wi the scalar endogenous regressor, zi the dz × 1 vectors of instruments and Xi the

d× 1 vector of control variables. The linear IV model is given by

yi = α1wi + b′yXi + ui

wi = π′zi + b′wXi + vi

zi = BzXi + ei

, (21)

where ui, vi and ei are the error terms which are mean zero with variances σ2
u, σ

2
v and Σe.

Further, ui and vi are correlated with correlation parameter ρ which captures the endogeneity

in the model and prevents us from using basic least squares to estimate α1. The standard

identifying assumption is that ei is uncorrelated with ui and vi such that the instruments

given the controls are uncorrelated with the errors.

To write the model in our general notation we first define ui

vi

ei

 =

 σu 0 0

ρσv
√

1− ρ2σv 0

0 0 Le


 ϵui

ϵvi

ϵei

 ,

where Σe = LeL
′
e with Le lower triangular. To accommodate our general framework we

impose that the components of ϵi = (ϵui , ϵ
v
i , ϵ

e
i )

′ are mutually independent, with mean zero

and unit variance. On this we note that the assumption that the instruments are independent

of the error terms ui and vi is more commonly imposed (e.g. Hansen, McDonald and Newey,

2010; Cattaneo, Crump and Jansson, 2012), and below we adopt specification tests to assess

whether this assumption is reasonable.

Letting Yi = (yi, wi, z
′
i)
′ we have

Yi = BXi + A−1ϵi , where A−1 =

 σu + α1σvρ α1

√
1− ρ2σv α1π

′Le

ρσv
√

1− ρ2σv π′Le

0 0 Le

 , (22)

and we set b = vec(B) and σ = (π, σu, σv, ρ, vech(Le)
′)′ to summarize the well identified

parameters in our general notation. Model (22) is a special case of the LSEM model (3).

The parameter α1 in the linear IV model may not be identified. The standard requirement

is that π ̸= 0. However, the current formulation of the linear IV model shows that with non-

Gaussian errors we may be able to locally identify α even when the instruments are irrelevant

(e.g. Comon, 1994, Theorem 11). More generally, when the instruments are weak but there is

a large degree of non-Gaussianity (relative to sampling variation) we may be able to precisely

identify α as the instruments are effectively only used to pin down the desired permutation
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in A.

We emphasize that Theorem 1 ensures that under weak instrument asymptotics, i.e.

π = c/
√
n as in Staiger and Stock (1997), the null rejection probability of the semi-parametric

score test for testing H0 : α = α0 does not exceed the nominal level. At the same time we

now have two possible identifying sources: the instruments and the non-Gaussian errors. In

this sense the model is over-identified and we use this feature below to test the instrument

exogeneity condition.

Data Given this set-up we revisit the returns to schooling problem considered by Card

(1995), which uses 1976 wage and schooling data from the 1966 cohort from the NLS to

estimate the effect of education on wages. Specifically, for model (22) we set yi to be the log

wage for individual i, wi is years of eduction, zi is an indicator for growing up near a 4 year

college interacted with parental education and Xi including measures for race, experience,

SMSA and region. We refer to Card (2001) for a more general discussion of the literature.

Confidence intervals for the returns to schooling We start by constructing confidence

intervals for α1 in the model (22) by inverting the semi-parametric score test Ŝγ̂ for the null

hypothesis H0 : α1 = α1,0. We compare this approach to inverting the standard the t-

statistic for OLS and 2SLS, as well as inverting the weak instrument robust Anderson-Rubin

(AR) statistic. The latter does not exploit non-Gaussian errors but has correct null rejection

probability under weak instrument asymptotics (e.g. Staiger and Stock, 1997).

Table 6 shows the different confidence intervals together with the point estimates for

OLS and 2SLS. We find that the OLS estimate is smaller when compared to the IV estimate

and also has a very small confidence interval resonating with the general findings from Card

(2001) that OLS is downward biased and having causal estimates presents a cost in terms

of accuracy. The 2SLS and AR confidence bands are very similar as the instrument in this

application is strong (the effective F -statistic of Montiel Olea and Pflueger (2013) is equal

to F = 80.25 far exceeding the generalized critical value of 23).

The semi-parametric score test Ŝγ̂ shows the smallest (non – OLS) confidence band for

the effect of education on wages [0.068, 0.105], which is considerably smaller when compared

to the AR confidence intervals. This reduction in length comes from exploiting non-Gaussian

errors in addition to the instrumental variable. Figure 6 shows kernel density estimates for

the residuals from the model, i.e. ϵ̂i = ÂV̂i, where Â = A(α̃1, σ̂) with α̃1 being the value that

minimizes the score statistic. We see that there are modest deviations from the Gaussian

distribution which are picked up by the score test and explain the shorter length of the

confidence interval.
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Instrument validity A large part of the discussion in Card (1995) and the subsequent

literature is devoted to evaluating the validity of the instruments. Several arguments are pre-

sented that question the exogeneity of the proximity to schooling instrument. For instance,

the presence of a college may be associated with higher school quality in nearby primary

and secondary schools, or with geographical variation in wages. Both are not included in

the model specification and hence such associations would invalidate the instrument.

To investigate whether the instruments are indeed invalid we extend the model specifi-

cation for zi in (21) to allow for correlation with the error term ui.

zi = BzXi + (α2/σu)ui + ei ,

where α2 captures the correlation of the error term with the instrument. The scaling by σu

is not necessary but makes the LSEM form below slightly more attractive. When α2 = 0

the instrument is exogenous.

With this extension the LSEM parametrization of the IV model becomes

Yi = BXi + A−1ϵi , A−1 =

 σu + α1σvρ+ α1π
′α2 α1

√
1− ρ2σv α1π

′Le

ρσv + π′α2

√
1− ρ2σv π′Le

α2 0 Le

 , (23)

and we test H0 : α1 = α1,0, α2 = α2,0 for different values of α0 = (α1,0, α2,0). It is worth

pointing out that the inclusion of the additional parameters α2 prevents the use of standard

IV methods, i.e. non-Gaussian errors are needed to distinguish between difference values

for α. To do this we use the semi-parametric score test and compare our results to some

alternative methods that were discussed in the simulation section.

Figure 7a-(a) shows the joint confidence set for α1 and α2 that was obtained by inverting

Ŝγ̂. We find that the hypothesis that the instrument is exogenous (i.e. α2 = 0) cannot be

rejected, and the 95% confidence set for α2 is reasonably tight between approximately -0.2

and 0.25. Most importantly, despite relaxing the instrument validity assumption the implied

returns to education are very similar: the confidence set indicates with 95% confidence that

the effect of education is between 0.06 and 0.12, only a mild increase when compared to the

model that assumes instrument exogeneity.

To showcase the advantage of the semi-parametric score test we also computed a con-

fidence set for α by inverting the pseudo maximum likelihood LM test LMpmle that was

discussed in the simulation study, see Figure 7a-(b). We find that the confidence set is

considerably larger in volume.
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Specification tests We re-emphasize that the semi-parametric score test was build on

the underlying assumption that the components of the errors ϵi are independent. For the

returns to schooling application this implied the errors ϵui , ϵ
v
i and ϵzi that determine the

structural errors and the instruments are independent. To investigate whether this is a

plausible assumption we apply the permutation test for mutual independence as proposed

by Matteson and Tsay (2017). The p-value for the test is 0.120 and we may conclude that

the independence assumption is not rejected for this application, though the evidence is not

overwhelming.

In the supplementary material we consider a more general LSEM model which allows

for conditional heteroskedasticity. There we repeated the analyses presented here with the

difference that the scalings σu, σv and Le are allowed to depend on Xi. We find that

resulting confidence set for α = (α1, α2) is quite similar when compared to its homoskedastic

counterpart.

7 Conclusion

In this paper we highlighted a weak identification problem that can arise when non-Gaussianity

is used to identify parameters in LSEMs. The consequence of this problem is that several

existing inference methods suffer from size distortions when the true distributions are close

to Gaussian.

To reduce this problem we proposed a semi-parametric score statistic for testing hypothe-

ses in LSEMs. Under mild regularity conditions we demonstrated that the semi-parametric

score test is locally robust in the sense that its null rejection probability is no greater than

the nominal level under parameter sequences that can be described by local deviations from

the true parameters which satisfy the null hypothesis (i.e. under weak identification asymp-

totics). A simulation study shows that our asymptotic theory provides an accurate approx-

imation to the finite sample performance of our test.

While we have restricted our treatment to models where the observations were indepen-

dently distributed across entities, we note that a similar approach may be considered for

dynamic models, but this will require extending our results to allow for non-i.i.d. data.

Further, whilst our work shows that the semi-parametric score test is robust under weak

identification asymptotics, no global uniformity results are derived. These extensions are

left for future work.
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Appendix

In this appendix we provide our main proofs. Regarding notation: x := y means that x
is defined to be y. The Lebesgue measure on RK is denoted by λK with λ := λ1 and the
standard basis vectors in RK are e1, . . . , eK . We will make use of the empirical process
notation: Pf :=

∫
f dP , Pnf := 1

n

∑n
i=1 f(Yi) and Gnf :=

√
n(Pn − P )f . For any two

sequence of probability measures (Qn)n∈N and (Pn)n∈N (where Qn and Pn are defined on a
common measurable space for each n ∈ N), Qn ◁ Pn indicates that (Qn)n∈N is contiguous
with respect to (Pn)n∈N. Qn ◁ ▷ Pn indicates that both Qn ◁Pn and Pn ◁Qn hold, see van der
Vaart (1998, Section 6.2) for formal definitions. X ⊥⊥ Y indicates that random vectors X
and Y are independent; X ≃ Y indicates that they have the same distribution. a ≲ b means
that a is bounded above by Cb for some constant C ∈ (0,∞); the constant C may change
from line to line. clX means the closure of X. vec−1 is the inverse vec operator, i.e. if
b = vec(B) then B = vec−1(b). If S is a subset of an inner product space (V, ⟨·, ·⟩), S⊥ is its
orthogonal complement, i.e. S⊥ = {x ∈ V : ⟨x, s⟩ = 0 for all s ∈ S}. If S ⊂ V is complete
(hence a Hilbert space) the orthogonal projection of x ∈ V onto S is Π(x|S).

In this appendix and the supplementary material we use notation which explicitly records
the dependency of objects on θ = (γ, η), including in cases where this was left implicit in the
main text to prevent the notation from becoming overly cumbersome. For instance, instead
of Ak•, in the appendices we write A(α, σ)k• or e′kA(α, σ).

A Score functions and local asymptotic normality

We first review a number of definitions and establish the semiparametric framework under-
lying the robust testing approach outlined in this paper.

Formally, the considered model (3) is the collection

PΘ = {Pθ : θ ∈ Θ} , (24)

where each Pθ is the law of the data Wi = (Yi, X̃i) which lies in W ⊂ RK+d−1. The
parameter space Θ has the form Θ = A×B×H, where A ⊂ RLα , B ⊂ RLβ . H has the form
Z ×

∏K
k=1 H , where Z is the space of density functions η0 and H is the space of density

functions ηk such that if X̃ ∼ η0 and ϵk ∼ ηk then Assumption 2 parts 1, 3, 4 and 5 hold.32

We write a typical element of Θ as θ = (α, β, η), where β = (b′, σ′)′ and it is understood
that α ∈ A, β ∈ B and η ∈ H. In what follows we will let Vθ,i := Yi − BXi be the reduced
form error so that A(α, σ)Vθ,i = ϵi. Each Pθ is absolutely continuous with respect to Lebesgue
measure on RK+d−1, with (Lebesgue) density given by

pθ(Wi) = | detA(α, σ)|
K∏
k=1

ηk(e
′
kA(α, σ)Vθ,i)× η0(X̃i) , (25)

32Part 2 of Assumption 2 serves to simplify the form of the effective score function derived in Lemma 3
and is not necessary to set up the model.
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and hence log-density

ℓθ(Wi) = log | detA(α, σ)|+
K∑
k=1

log ηk(e
′
kA(α, σ)Vθ,i) + log η0(X̃i) . (26)

We now define the scores of model (24) following the definition in van der Vaart (2002).

Definition 1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map
t 7→ Pt from a neighborhood of 0 ∈ [0,∞) to PΘ such that for some measurable function
s : W → R, ∫ [√

pt −
√
p

t
− 1

2
s
√
p

]2
dµ→ 0 , (27)

as t → 0, where pt and p respectively denote the densities of Pt and P relative to a σ-finite
measure µ. The map t → √

pt is the root density path and s is the score function of the
submodel {Pt : t ≥ 0} at t = 0.

In words, a differentiable path is a one-dimensional parametric submodel {Pt : t ≥ 0}
that is differentiable in quadratic mean at t = 0 with score function s. If we let t 7→ Pt range
over a collection of submodels, indexed by V , we will obtain a collection of score functions,
say sj for j ∈ V .

The differentiable paths we consider have the following form. Let Pt be the measure
corresponding to the density with form as in (25) evaluated at θt := (γ + tg, ηt) where the
k-th coordinate of ηt is ηhk

k,t := ηk(1 + thk) (k = 0, . . . , K), and (g, h) ∈ RL × H, where

H =
∏K

k=0Hk and each Hk is defined following (6). That such t 7→ Pt paths are indeed
differentiable paths as in Definition 1 is established in the following lemma.

Lemma 1. Suppose Assumptions 1 and 2 hold and that (α, β) is an interior point of A×B.
For each (g, h) ∈ RL ×H := V, the map t 7→ Pθt is a differentiable path, with score function
g′ℓ̇θ + h̃0 +

∑K
k=1 h̃k, where ℓ̇θ := ∇γ log pθ, h̃0(W ) := h0(X̃) and h̃k(W ) := hk(e

′
kA(α, σ)Vθ).

ℓ̇θ has the form ℓ̇θ = (ℓ̇′θ,α, ℓ̇
′
θ,b, ℓ̇

′
θ,σ)

′, with

ℓ̇θ,α,l(W ) :=
K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,j(α, σ)ϕk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζαl,k,k(α, σ)[ϕk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1]

ℓ̇θ,σ,l(W ) :=
K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,j(α, σ)ϕk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζσl,k,k(α, σ)[ϕk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1],

and

ℓ̇θ,b(W )′ := −
K∑
k=1

ϕk (e
′
kA(α, σ)Vθ) e

′
kA(α, σ)[X

′ ⊗ IK ].
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Proof. Let g = (a, ϱ, s) ∈ RLα × RLb × RLσ . The log density of W under θt is then

ℓθt(W ) = log pθt(W )

= log η0(X̃) + log(1 + th0(X̃)) + log | det(A(α + ta, σ + ts))|

+
K∑
k=1

log ηk
(
e′kA(α + ta, σ + ts)(Y −BX − t vec−1(ϱ)X)

)
+

K∑
k=1

log
(
1 + thk

(
e′kA(α + ta, σ + ts)(Y −BX − t vec−1(ϱ)X)

))
,

By Lemma S6, t 7→ √
pθt is continuously differentiable (pointwise) in a neighbourhood V

of 0. Moreover, if we define qt(W ) :=
∂ log pθx (W )

∂x

∣∣
x=t

and Qt := Pθtqt(W )2, Qt is finite and
continuous in a neighbourhood of 0 by the uniformly integrability of {qt(W )2 : t ∈ V} along
with the pointwise continuity of t 7→ qt(W ), both of which follow from Lemma S6. Hence,
by Lemma 1.8 in van der Vaart (2002), t 7→ Pθt is a differentiable path with score function
given by the derivative of ℓθt(W ) at t = 0, which is:

K∑
k=1

ϕk (e
′
kA(α, σ)Vθ) e

′
k

Lα∑
l=1

alDα,l(α, σ)Vθ +
Lα∑
l=1

al tr(A(α, σ)
−1Dα,l(α, σ))

+
K∑
k=1

ϕk (e
′
kA(α, σ)Vθ) e

′
k

Lσ∑
l=1

slDσ,l(α, σ)Vθ +
Lσ∑
l=1

sl tr(A(α, σ)
−1Dσ,l(α, σ))

−
K∑
k=1

ϕk (e
′
kA(α, σ)Vθ) e

′
kA(α, σ)[X

′ ⊗ IK ]ϱ+ h0(X̃) +
K∑
k=1

hk (e
′
kA(α, σ)Vθ) ,

(28)

with Dx,l(α, σ) = ∇xl
A(α, σ) for any x ∈ {α, σ} and any l in {1, . . . , Lα} or {1, . . . , Lσ}

as appropriate. We can re-write the two expressions involving the trace as follows: for any
x ∈ {α, σ} and appropriate index l we have

K∑
k=1

ϕk(e
′
kA(α, σ)Vθ)e

′
kDx,l(α, σ)Vθ + tr(A(α, σ)−1Dx,l(α, σ))

=
K∑
k=1

ϕk(e
′
kA(α, σ)Vθ)e

′
kDx,l(α, σ)A(α, σ)

−1ϵ+ tr(Dx,l(α, σ)A(α, σ)
−1)

=
K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j(α, σ)ϕk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζxl,k,k(α, σ)[ϕk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ)Vθ + 1],

for ζxl,k,j(α, σ) := e′kDx,l(α, σ)A(α, σ)
−1ej. We may therefore write the derivative (28) as
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a′ℓ̇θ,α + ϱ′ℓ̇θ,b + s′ℓ̇θ,σ + ℓ̇θ,η,h where

ℓ̇θ,η,h(W ) := h0(X̃) +
K∑
k=1

hk (e
′
kA(α, σ)Vθ) = h̃0(W ) +

K∑
k=1

h̃k(W ). (29)

An elementary calculation reveals that g′ℓ̇θ = a′ℓ̇θ,α + ϱ′ℓ̇θ,b + s′ℓ̇θ,σ.

As shown in Lemma 1, the score functions corresponding to η are ℓ̇θ,η,h as defined in (29),
for h ranging over H. These are collected in the set T , as defined in equation (6).

The next Lemma establishes a uniform local asymptotic normality result for (a localised
version of) our model. For this we need to specify the notion of convergence on V := RL×H.
We equip the product space V with the norm33

∥(g, h)∥ :=

√√√√∥g∥2 + ∥h̃0∥2L2(Pθ)
+

K∑
k=1

∥h̃k∥L2(Pθ)}2 .

Lemma 2. Suppose that Assumptions 1 and 2 hold and that (α, β) is an interior point of
A× B. For (g, h) ∈ V let

θn(g, h) := θ + n−1/2(g, η0h0, . . . , ηKhK).

For any convergent sequence (gn, hn) → (g, h) (all in V), define Rn as

Rn := log
n∏

i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− 1√

n

n∑
i=1

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]
+
1

2
E

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]2
.

Then,

1. Rn
Pθ−→ 0,

2. Under Pθ,

1√
n

n∑
i=1

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]
⇝ N

0,E

[
g′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

]2 ,

3. The (product) measures P n
θn

and P n
θ are mutually contiguous.

Proof. Part 2 follows from Lemma 1 in combination with the Lindenberg-Lévy central limit
theorem and Lemma 1.7 of van der Vaart (2002). For Part 1, we first note that in the

special case where (gn, hn) = (g, h) for all n ∈ N, Rn
Pθ−→ 0 follows by combining Lemma

1 with Lemma 1.9 in van der Vaart (2002). For the general case, note that by Lemma S7

(i) the functions (g, h) 7→ 1√
n

∑n
i=1

[
g′ℓ̇θ +

∑K
k=0 h̃k

]
(i.e. indexed by n) are equicontinuous

33Each h̃k is as defined in the statement of Lemma 1.
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on compacts in L2(Pθ) and (ii) the functions (g, h) 7→ P n
θn(g,h)

(i.e. indexed by n) are

equicontinuous on compacts in the total variation metric. By (i), the i.i.d. assumption and
Lemma 1.7 in van der Vaart (2002)

lim
n→∞

E

[
(g − gn)

′ℓ̇θ(Wi) +
K∑
k=0

(
h̃k(Wi)− h̃n,k(Wi)

)]2

= lim
n→∞

E

[
1√
n

n∑
i=1

[
(g − gn)

′ℓ̇θ(Wi) +
K∑
k=0

(
h̃k(Wi)− h̃n,k(Wi)

)]]2
= 0.

(30)

By (ii) one has limn→∞ dTV (P
n
θn(gn,hn)

, P n
θn(g,h)

) = 0 where dTV indicates the total variation

metric. This implies (cf. Theorem 80.13 in Strasser (1985))

log
n∏

i=1

pθn(gn,hn)(Wi)

pθ(Wi)
− log

n∏
i=1

pθn(g,h)(Wi)

pθ(Wi)
= oPn

θ
(1).

Combine the preceding two displays with the previously demonstrated result for the special
case where (gn, hn) = (g, h) for all n ∈ N to conclude. Part 3 then follows by combining
Parts 1 and 2 with Example 6.5 in van der Vaart (1998).

B Orthogonality and the effective score

We now derive the effective score for α, i.e. κ̃θ. By definition, this is the orthogonal projection
of the score function for the parameter of interest, i.e. ℓ̇θ,α, on the orthocomplement (in
L2(Pθ)) of the space spanned by the score functions for all nuisance parameters, i.e. ℓ̇θ,σ, ℓ̇θ,b
and ℓ̇θ,η,h.

34 That is, collecting the scores for the nuisance parameters as

S := Span(ℓ̇θ,b) + Span(ℓ̇θ,σ) + T ⊂ L2(Pθ),

where T is defined in (6) and collects the scores corresponding to η, one has

κ̃θ,l := Π
(
ℓ̇θ,α,l

∣∣∣S⊥
)
,

for each l = 1, . . . , Lα.
It is convenient to calculate this projection in two steps (see Bickel et al., 1998, p.

74). Firstly we calculate the effective score for the Euclidean parameters γ, i.e. the or-
thogonal projection of (ℓ̇′θ,α, ℓ̇

′
θ,σ, ℓ̇

′
θ,b)

′ onto the orthocomplement of the space spanned by

the score functions for the infinite dimensional parameter η, i.e. T ⊥. We denote this by

34The terminology “effective score” is taken from Choi, Hall and Schick (1996); much of the semiparametric
literature calls this object the “efficient score” (e.g. Bickel et al., 1998; van der Vaart, 1998).
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ℓ̃θ := (ℓ̃′θ,α, ℓ̃
′
θ,σ, ℓ̃

′
θ,b)

′ = (ℓ̃′θ,α, ℓ̃
′
θ,β)

′, i.e. for any x ∈ {α, σ, b} and l in {1, . . . , Lx}

ℓ̃θ,x,l = Π
(
ℓ̇θ,x,l

∣∣∣T ⊥
)
. (31)

For the second step, we may partition

ℓ̃θ =
(
ℓ̃′θ,α, ℓ̃

′
θ,β

)′
and Ĩθ =

[
Ĩθ,αα Ĩθ,αβ
Ĩθ,βα Ĩθ,ββ

]
, (32)

with Ĩθ := Pθ[ℓ̃θℓ̃
′
θ]. If Ĩθ,ββ is nonsingular,35 we can (orthogonally) project once more to

obtain the effective score function for α:36

κ̃θ = ℓ̃θ,α − Ĩθ,αβ Ĩ
−1
θ,ββ ℓ̃θ,β , (33)

which has corresponding effective information matrix

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ
−1
θ,ββ Ĩθ,βα . (34)

Lemma 3. Suppose Assumptions 1 and 2 hold. Then the components of ℓ̃θ are as follows.
For x = α or x = σ,

ℓ̃θ,x,l(W ) =
K∑
k=1

K∑
j=1,j ̸=k

ζxl,k,j(α, σ)ϕk(e
′
kA(α, σ)Vθ)e

′
jA(α, σ)Vθ

+
K∑
k=1

ζxl,k,k(α, σ)(τk,1e
′
kA(α, σ)Vθ + τk,2κ(e

′
kA(α, σ)Vθ)),

with l in {1, . . . , Lα} or {1, . . . , Lσ} (respectively); for x = b,

ℓ̃θ,b(W ) = −
K∑
k=1

ϕk(e
′
kA(α, σ)Vθ)e

′
kA(α, σ) ([X

′ ⊗ IK ]− E[(X ′ ⊗ IK)])

+
K∑
k=1

e′kA(α, σ)E[(X ′ ⊗ IK)](ςk,1e
′
kA(α, σ)Vθ + ςk,2κ(e

′
kA(α, σ)Vθ));

35If Ĩθ,ββ is singular, we may drop components from ℓ̃θ,β until the remaining components form a linearly

independent collection which span the same subspace of L2(Pθ) as ℓ̃θ,β . The corresponding variance matrix

of this smaller vector will be non-singular and ℓ̃θ,β can be replaced throughout by this smaller vector.
36For any l = 1, . . . , Lα, one has that

κθ,l = ℓ̃θ,α,l − e′lĨθ,αβ Ĩ
−1
θ,ββ ℓ̃θ,β = Π

(
ℓ̃θ,α,l

∣∣∣∣[Span(ℓ̃θ,β)]⊥) .
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where the expectations are taken under Pθ and

τk :=M−1
k

(
0
−2

)
, ςk :=M−1

k

(
1
0

)
, for Mk :=

(
1 E[ϵ3k]

E[ϵ3k] E[ϵ4k]− 1

)
.

Proof. For each hk ∈ Hk, define the corresponding h̃k as in the statement of Lemma 1 and let
H̃k collect all such h̃k formed with hk ranging over Hk.

37 By the definition of ℓ̃θ in equation
(31) and Theorem 4.11 in Rudin (1987) it suffices to show that each such component is (a)
in (H̃0 + · · · + H̃K)

⊥ and (b) ℓ̇θ,x − ℓ̃θ,x ∈ cl(H̃0 + · · · + H̃K), the form of which is given in
Lemma S8.

Case 1: x = α, σ. For (a) note that if j ̸= k, then

E
[
ζxl,k,j(α, σ)ϕk(ϵk)ϵjh0(X̃)

]
= E

[
ζxl,k,j(α, σ)ϕk(ϵk)h0(X̃)

]
E[ϵj] = 0

E
[
ζxl,k,j(α, σ)ϕk(ϵk)ϵjhm(ϵm)

]
= E

[
ζxl,k,j(α, σ)

]
E [ϕk(ϵk)ϵjhm(ϵm)] = 0

where the last equality follows from independence and the fact that m must differ from one
of k, j. Additionally, by independence and our moment assumptions (i.e. Assumption 2)

E
[(
ζxl,k,j(α, σ)[τk,1ϵk + τk,2κ(ϵk)]

)
h0(X̃)

]
= ζxl,k,j(α, σ)E [τk,1ϵk + τk,2κ(ϵk)]E[h0(X̃)] = 0,

and again using independence and the definition of Hk,

E
[
ζxl,k,j(α, σ)[τk,1ϵk + τk,2κ(ϵk)]hj(ϵj)

]
= ζxl,k,j(α, σ)E [(τk,1ϵk + τk,2κ(ϵk))hj(ϵj)] = 0.

Since ϵk = e′kA(α, σ)Vθ, these observations and the form of ℓ̃θ,x establish (a). For (b), it
suffices to show that

fk(ϵk) := ϕk(ϵk)ϵk + 1− τk,1ϵk − τk,2κ(ϵk) ∈ Hk.

That E[fk(ϵk)] = 0 and E[fk(ϵk)2] < ∞ follows immediately from Assumption 2. That
additionally E[fk(ϵk)ϵk] = E[fk(ϵk)κ(ϵk)] = 0 is ensured by the choice of τk.

Case 2: x = b. For (a) let m(X) := A(α, σ)(X ′ ⊗ IK) and µ = E[m(X)]. Then,

E[ϕk(ϵk)e
′
k(m(X)− µ)h0(X̃)] = E[ϕk(ϵk)]E[e′k(m(X)− µ)h0(X̃)] = 0

E[ϕk(ϵk)e
′
k(m(X)− µ)hj(ϵj)] = E[ϕk(ϵk)hj(ϵj)]E[e′k(m(X)− µ)] = 0

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))h0(X̃)] = e′kµE[ςk,1ϵk + ςk,2κ(ϵk)]E[h0(X̃)] = 0;

for k ̸= j by independence

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))hj(ϵj)] = e′kµE[ςk,1ϵk + ςk,2κ(ϵk)]E[hj(ϵj)] = 0

37That is, for each h0 ∈ H0 define h̃0 : W → R acccording to h̃0(W ) := h0(X̃) and let H̃0 collect the
h̃0 functions so formed. Similarly, for each hk ∈ Hk (k = 1, . . . ,K), define h̃k : W → R according to
h̃k(W ) := hk(e

′
kA(α, σ)Vθ) and let let H̃k collect the h̃k functions so formed.
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whilst for k = j, the definition of Hk ensures that

E[e′kµ (ςk,1ϵk + ςk,2κ(ϵk))hk(ϵk)] = e′kµE[ςk,1ϵkhk(ϵk) + ςk,2κ(ϵk)hk(ϵk)] = 0.

Since ϵk = e′kA(α, σ)Vθ, these observations and the form of ℓ̃θ,b establish (a). For (b) it
suffices to show that

qk(ϵk) := (ϕk(ϵk) + ςk,1ϵk + ςk,2κ(ϵk)) (−e′kµ) ∈ Hk.

That E[qk(ϵk)] = 0 and E[qk(ϵk)2] < ∞ follows immediately from Assumption 2. That
additionally E[qk(ϵk)ϵk] = E[qk(ϵk)κ(ϵk)] = 0 is ensured by the choice of ςk.

C Proof of Theorem 1

C.1 Log density score estimation

As discussed just prior to Assumption 3, the log density score estimator in (11) may be
replaced by an alternative estimator, provided it satisfies some high level conditions. These
are given in the following assumption.

Assumption 4. Let νn be as in Assumption 3. We have estimators ϕ̂k,n,γ such that for (a)
any sequence with elements θn = (α0, βn, η) ∈ Θ where (βn)n∈N is a deterministic sequence
with

√
n∥βn − β∥ = O(1) and (b) any array (Zn,i)n∈N,i≤n with i.i.d. rows and such that

EZn,i = 0, supn∈N EZ2
n,i <∞ and Zn,i ⊥⊥ ϵi,k for each n, i, and k,

1

n

n∑
i=1

[
ϕ̂k,n,γn(Ak,γnVθn,i)− ϕk(Ak,γnVθn,i)

]
Zn,i = oPn

θn
(n−1/2), (35)

1

n

n∑
i=1

([
ϕ̂k,n,γn(Ak,γnVθn,i)− ϕk(Ak,γnVθn,i)

]
Zn,i

)2
= oPn

θn
(νn). (36)

where Ak,γn := e′kA(α0, σn), Vθn,i := Yi − vec−1(bn)Xi.

The following Lemma verifies that, under Assumptions 2 and 3, the log density score
estimator in (11) satisfies Assumption 4. Its proof is given in Section S5 of the supplementary
appendix.

Lemma 4. Suppose Assumptions 2 and 3 hold. Then, ϕ̂k,n,γ := ϕ̂k,n as defined in (11)
satisfies Assumption 4.

C.2 Proof of Theorem 1

In order to prove Theorem 1, we first establish two results which give high level conditions
under which Theorem 1 holds. The proof of Theorem 1 then consists of verifying the required
high level conditions under our primitive assumptions. Let us first recall the definitions of
various objects which were introduced in Section 3.
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We have that ℓ̃θ denotes the effective score for Euclidean parameter vector γ = (α, β),
evaluated at θ (as defined in (31) and derived in Lemma 3). The effective information for
γ is denoted Ĩθ := Pθ[ℓ̃θℓ̃

′
θ]. Given a γ = (α, β), these objects are estimated by ℓ̂n,γ =

ℓ̂n,γ(W1, . . . ,Wn) and În,γ = În,γ(W1, . . . ,Wn), respectively. Each of these objects can be
partitioned conformally with (α, β):

ℓ̃θ =

(
ℓ̃θ,α
ℓ̃θ,β

)
, ℓ̂n,γ =

(
ℓ̂n,γ,α
ℓ̂n,γ,β

)
, Ĩθ =

(
Ĩθ,αα Ĩθ,αβ
Ĩθ,βα Ĩθ,ββ

)
, and În,γ =

(
În,γ,αα În,γ,αβ
În,γ,βα În,γ,ββ

)
.

The effective score for α is κ̃θ := ℓ̃θ,α− Ĩθ,αβ Ĩ−1
θ,ββ ℓ̃θ,β, with corresponding effective information

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ
−1
θ,ββ Ĩθ,βα.

38 For a given γ, the estimator of κ̃θ is

κ̂n,γ := ℓ̂n,γ,α − În,γ,αβ Î
−1
n,γ,ββ ℓ̂n,γ,β.

The estimator of the effective information for α, Ĩθ, is formed in two steps. Firstly, the
preliminary estimate Ǐn,γ := În,γ,αα − În,γ,αβ Î

−1
n,γ,ββ În,γ,ββ is formed by replacing population

quantities by their sample equivalents. Secondly, the regularized estimator În,γ is formed as
in (15): let Ǔn,γΛ̌n,γǓ

′
n,γ be the eigendecomposition of the initial estimator Ǐn,γ. Λ̌n,γ is a

diagonal matrix with (i, i)th element λ̌n,γ,i. Then the estimator is:

Ît
n,γ = Ǔn,γΛ̂n,γ(ν

1/2
n )Ǔ ′

n,γ ,

where Λ̂n,γ(ν
1/2
n ) is a diagonal matrix with the ν

1/2
n -truncated eigenvalues of În,γ on the main

diagonal, i.e. the (i, i)–th element of Λ̂n(ν
1/2
n ) is 1(λ̌n,γ,i ≥ ν

1/2
n ). The rank estimator used is

r̂n,γ = rank(Ît
n,γ). Finally, the effective score statistic (for a given γ) is given by

Ŝn,γ := n (Pnκ̂n,γ)
′ Ît,†

n,γ (Pnκ̂n,γ) ,

where Ît,†
n,γ is the Moore – Penrose psuedoinverse of Ît

n,γ.

Theorem 2. Suppose that for any deterministic sequence (θ̃n)n∈N in Θ with elements θ̃n =
(α, βn, η) such that

√
n∥βn − β∥ = O(1) the following conditions hold:

1. The functions ℓ̃θn satisfy

√
nPn

[
ℓ̃θ̃n − ℓ̃θ

]
+
√
nĨθ

(
0

βn − β

)
= oPn

θ
(1); (37)

2. The estimators ℓ̂n,γn satisfy
√
nPn

[
ℓ̂n,γn − ℓ̃θ̃n

]
= oPn

θ̃n
(1);

3. The estimators În,γn satisfy ∥În,γn − Ĩθ∥2 = oPn
θ̃n
(ν

1/2
n ) for a non-negative sequence

(νn)n∈N with νn → 0;

38Here it is assumed that Ĩθ,ββ is non-singular; cf. footnote 35.
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where γn := (α, βn), θ := (α, β, η) and Ĩθ := Pθ[ℓ̃θℓ̃
′
θ]. Moreover, suppose that for (gn, hn) →

(g, h) (all in V) and some σ(g, h) ∈ (0,∞), under P n
θ(

√
nPnℓ̃θ, log

n∏
i=1

pθn(gn,hn)

pθ

)
⇝ N

((
0

−1
2
σ(g, h)

)
,

(
Ĩθ Ĩθg

g′Ĩθ σ(g, h)

))
, (38)

where θn(g, h) is as in Lemma 2. Suppose that initial estimators β̂n are available with√
n∥β̂n − β∥ = OPn

θ
(1) and let β̄n be a discretised version of this which takes values in

Gn := n−1/2CZLβ for some C ∈ (0,∞).39 Then, if γ̄n := (α, β̄n) and r := rank Ĩθ,

√
nPnκ̂n,γ̄n =

√
nPnκ̃θ + oPn

θn(gn,hn)
(1)⇝ N (0, Ĩθ), and Ŝn,γ̄n ⇝ χ2

r, (39)

under any P n
θn(gn,hn)

such that (gn, hn) → (g, h) (all in V) with g = (0, (b, s)′)′ ∈ RLα × RLβ .

Additionally, under any P n
θn(gn,hn)

such that (gn, hn) → (g, h) (all in V),

r̂n,γ̄n
Pn
θn(gn,hn)−−−−−−→ r. (40)

Proof. Step 1: Let dn :=
√
n(βn − β). By arguing along subsequences if necessary we may

assume without loss of generality that dn → d. Hence for g⋄n := (0, d′n)
′ → (0, d′)′ =: g⋄,

θ̃n = θn(g
⋄
n, 0). By condition (38) and Example 6.5 in van der Vaart (1998), P n

θ̃n
◁ ▷ P n

θ and
so, given the assumed convergences in conditions 2 and 3, we have

√
nPn

[
ℓ̂n,γn − ℓ̃θ̃n

]
= oPn

θ
(1) and ∥În,γn − Ĩθ∥2 = oPn

θ
(ν1/2n ).

Step 2: We show that the convergences in the preceding display and equation (37) con-
tinue to hold if γn (and θn = (γn, η)) is replaced by γ̄n (and θ̄n = (γ̄n, η)) as in the statement
of the theorem. Let γ⋆ = (α, β⋆) and θ⋆ = (γ⋆, η) and define

Rn,1(β
⋆) :=

√
nPn

[
ℓ̃θ⋆ − ℓ̃θ

]
+
√
nĨθ

(
0

β⋆ − β

)
Rn,2(β

⋆) :=
√
nPn

[
ℓ̂n,γ⋆ − ℓ̃θ⋆

]
Rn,3(β

⋆) := ν−1/2
n

[
În,γ⋆ − Ĩθ

]
.

For any ε > 0 there is an M such that P n
θ (
√
n∥β̂n − β∥ > M) < ϵ. Moreover, whenever√

n∥β̂n − β∥ ≤ M then β̄n ∈ GM
n := {β ∈ Gn : ∥β − β∥ ≤ n−1/2M}. For fixed M , the

39That is, β̄n is the nearest element in Gn to β̂n.
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cardinality |GM
n | <∞ of this set is bounded independently of n, say by GM . For any υ > 0,

P n
θ

(
∥Rn,i(β̄n)∥ > υ

)
≤ ε+

∑
β⋆
n∈GM

n

(
{∥Rn,i(β

⋆
n)∥ > υ} ∩ β̄n = β⋆

n

)
≤ ε+

∑
β⋆
n∈GM

n

(∥Rn,i(β
⋆
n)∥ > υ)

≤ ε+ GMP n
θ (∥Rn,i(β

⋄
n)∥ > υ) ,

where β̆n ∈ GM
n is the maximiser of β⋆ 7→ P n

θ (∥Rn,i(β
⋆)∥ > υ). As β̆n ∈ GM

n , θ̆n := (α, β̆n, η)

is a deterministic sequence with
√
n∥β̆n − β∥ = OPn

θ
(1). Thus, by equation (37) and Step 1,

√
nPn

[
ℓ̃θ̄n − ℓ̃θ

]
+
√
nĨθ

(
0

β̄n − β

)
= oPn

θ
(1);

√
nPn

[
ℓ̂n,γ̄n − ℓ̃θ̄n

]
= oPn

θ
(1);

∥În,γ̄n − Ĩθ∥2 = oPn
θ
(ν1/2n ).

(41)

Step 3: Combine the first two lines of (41) to obtain

√
nPn

[
ℓ̂n,γ̄n − ℓ̃θ

]
= −

√
nĨθ

(
0

β̄n − β

)
+ oPn

θ
(1).

By the third line of (41),

K̂n,γ̄n :=
[
I −În,γ̄n,αβ Î−1

n,γ̄n,ββ

]
Pn
θ−→ K̃θ :=

[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
.

By (38) and Example 6.5 in van der Vaart (1998), P n
θn(gn,hn)

◁ ▷ P n
θ . In combination with

the preceding two displays this gives

√
nPn [κ̂n,γ̄n − κ̃θ]

=
[
K̂n,γ̄n − K̃θ

]√
nPn

[
ℓ̂n,γ̄n − ℓ̃θ

]
+ K̃θ

√
nPn

[
ℓ̂n,γ̄n − ℓ̃θ

]
+
[
K̂n,γ̄n − K̃θ

]√
nPnℓ̃θ

= −K̃θĨθ

(
0√

n(β̄n − β)

)
+ oPn

θn(gn,hn)
(1)

= −
(
Ĩθ 0

)( 0√
n(β̄n − β)

)
+ oPn

θn(gn,hn)
(1)

= oPn
θn(gn,hn)

(1).

By (38) and Le Cam’s third Lemma (e.g. van der Vaart, 1998, Example 6.7),

√
nPnκ̃θ = Kθ

√
nPnℓ̃θ ⇝ KθZ, where Z ∼ N (Ĩθg, Ĩθ)
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under any P n
θn(gn,hn)

with (gn, hn) → (g, h) (all in V). KθĨθK′
θ = Ĩ and with g = (0, (b, s)′)′,

KθĨθg =
(
Ĩθ 0

)( 0
(b, s)′

)
= 0.

We conclude that
κ̂n,γ̄n ⇝ N (0, Ĩθ) under P n

θn(gn,hn). (42)

For the final part of the proof, note that since any submatrix has a smaller operator norm
than the original matrix and the matrix inverse is Lipschitz continuous at a non-singular
matrix, the third line of (41) implies that

∥În,γ̄n − Ĩθ∥2 = oPn
θ
(ν1/2n ).

Therefore, by Proposition S1 and P n
θn(gn,hn)

◁ ▷ P n
θ ,

Ît,†
n,γ̄n

Pn
θn(gn,hn)−−−−−−→ Ĩ†

θ and r̂n,γ̄n
Pn
θn(gn,hn)−−−−−−→ r,

which gives (40). For the final part of (39), combine the preceding display with the weak
convergence result in equation (42) and Theorem 9.2.2 in Rao and Mitra (1971).

Corollary 1. In the setting of Theorem 2, let cn be the 1−a quantile of the χ2
rn distribution

for any a ∈ (0, 1) and

Θ0,n =
{
(α0, β + d/

√
n, η(1 + h/

√
n) : d ∈ D⋆, h ∈ H⋆

}
,

where D⋆ is a bounded subset of RLβ and H⋆ is a compact subset of H.40 Then,

lim
n→∞

sup
ϑ∈Θ0,n

P n
ϑ

(
Ŝn,γ̄n > cn

)
≤ a,

with inequality only if r = 0.

Proof. Set Ŝn := Ŝn,γ̄n , r̂n := r̂n,γ̄n and φn := 1{Ŝn > cn}. Let g, h be such that g = (0, d),

d ∈ D⋆ and h ∈ H⋆. Since r̂n
Pn
θ−→ r (by Theorem 2), the events En := {r̂n = r} satisfy

P n
θ En → 1. Thus cn

Pn
θ−→ c, the 1 − a quantile of a χ2

r random variable. We now split into
cases.

Case 1: r > 0. By Theorem 2

Ŝn − cn ⇝ Z − c under P n
θn(g,h) as n→ ∞,

with Z ∼ χ2
r. Since this is a continuous distribution

lim
n→∞

P n
θn(g,h)φn = a.

Case 2: r = 0. On En, r̂n = 0 =⇒ În,γ̄n = 0 =⇒ Ŝn = 0 =⇒ φn = 0, whilst

40See the discussion immediately preceding Lemma 2 for the norm used on H.
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P n
θn(g,h)

En → 1 by the contiguity which follows from (38) and Example 6.5 in van der Vaart

(1998). Thus
lim
n→∞

P n
θn(g,h)φn = 0.

These two limiting statements continue to hold under any convergent sequence (gn, hn) →
(g, h), with each gn = (0, dn) for dn ∈ D⋆ and hn ∈ H⋆ and (g, h) ∈ clD⋆ × H⋆, as
follows directly from dTV (P

n
θn(gn,hn)

, P n
θn(g,h)

) → 0 as shown in Lemma S7. Considering such

convergent sequences is sufficient since each (gn, hn) ∈ {0}×clD⋆×H⋆, which is compact.

We next prove our main Theorem by verifying the conditions of Corollary 1.

Proof of Theorem 1. It suffices to show the conditions of Corollary 1 hold. There are 4
conditions which we verify in order: items 1, 2, 3 & equation (38) of the statement of
Theorem 2.

Condition 1: Let dn :=
√
n(βn − β) and gn = (0, dn). Then θ̃n = θn(gn, 0). By arguing

along subsequences if necessary we may assume without loss of generality that dn → d. By
Theorem 12.14 in Rudin (1991),

Pθ

[
ℓ̃θℓ̇

′
θ

]
g = Ĩθ

(
0
d

)
= Ĩθ

(
0√

n(βn − b)

)
+ o(1). (43)

Given this, condition 1 follows by Proposition A.10 in van der Vaart (1988), the hypotheses
of which are verified by Lemmas 1, S9 and S10.

Condition 2: This follows by repeated addition and subtraction along with the con-
vergence in probability and stochastic boundedness results of Lemma S11, Lemma 4, the
moment conditions in Assumption 2 and the boundedness of A(α, σn), A(α, σn)

−1 and
Dx,l(α, σn) (for x ∈ {α, σ}), which follows as each of these functions is continuous by As-
sumption 1 and (σn)n∈N is a convergent sequence.

Condition 3: Let Ĭn,θn := 1
n

∑n
i=1 ℓ̃θ̃n ℓ̃

′
θ̃n
. By repeated addition and subtraction along

with the results of Lemmas 4, S13 and S14,

1

n

n∑
i=1

∥ℓ̃θ̃n − ℓ̂n,γn∥2 = oPn
θ̃n
(νn).
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This and Lemma S9 imply that

∥∥∥În,γn − Ĭn,θ̃n

∥∥∥
2
=

∥∥∥∥∥ 1n
n∑

i=1

ℓ̂n,γn

(
ℓ̂n,γn − ℓ̃θ̃n

)′
+
(
ℓ̂n,γn − ℓ̃θ̃n

)
ℓ̃′
θ̃n

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥∥ℓ̂n,γn (ℓ̂n,γn − ℓ̃θ̃n

)′∥∥∥∥
2

+
1

n

n∑
i=1

∥∥∥(ℓ̂n,γn − ℓ̃θ̃n

)
ℓ̃′
θ̃n

∥∥∥
2

≤

(
1

n

n∑
i=1

∥∥∥ℓ̂n,γn∥∥∥2
)1/2(

1

n

n∑
i=1

∥∥∥ℓ̂n,γn − ℓ̃θ̃n

∥∥∥2)1/2

+

(
1

n

n∑
i=1

∥∥∥ℓ̂n,γn − ℓ̃θ̃n

∥∥∥2)1/2(
1

n

n∑
i=1

∥∥∥ℓ̃θ̃n∥∥∥2
)1/2

= oPn
θ̃n
(ν1/2n ).

To complete the demonstration of Condition 3, we show that the right hand side terms in

∥Ĭn,θ̃n − Ĩθ∥ ≤
∥∥∥Pn

[
ℓ̃θ̃n ℓ̃

′
θ̃n

− Pθ̃n

[
ℓ̃θ̃n ℓ̃

′
θ̃n

]]∥∥∥+ ∥∥∥Pθ̃n

[
ℓ̃θ̃n ℓ̃

′
θ̃n

]
− Pθ

[
ℓ̃θℓ̃

′
θ

]∥∥∥
are respectively oPn

θ̃n
(ν

1/2
n ) and o(ν

1/2
n ). Under P n

θ̃n
, each e′kA(α, σn)Vθ̃n,i has the same law as

ϵk,i (k = 1, . . . , K), whilst the same is true for A(α, σ)Vθ,i under P
n
θ . This,

√
n∥βn−β∥ = O(1)

and the local Lipschitz continuity of each β 7→ ζxl,j,k(α, σ) and β 7→ A(α, σ) yield that the

rightmost term is O(n−1/2) = o(ν
1/2
n ). For the first term on the right hand side we note that

supn∈N Pθ̃n
∥ℓ̃θ̃n ℓ̃

′
θ̃n
∥2+δ/2 < ∞ by Lemma S9. This is sufficient as either 1 + δ/4 > p = 2,

in which case Pn

[
ℓ̃θ̃n ℓ̃

′
θ̃n

− Pθ̃n

[
ℓ̃θ̃n ℓ̃

′
θ̃n

]]
= OPn

θ̃n
(n−1/2) = oPn

θ̃n
(ν

1/2
n ) by Lindeberg’s CLT or

p = 1 + δ/4 ∈ (1, 2) whence Pn

[
ℓ̃θ̃n ℓ̃

′
θ̃n

− Pθ̃n

[
ℓ̃θ̃n ℓ̃

′
θ̃n

]]
= OPn

θ̃n
(n(1−p)/p) = oPn

θ̃n
(ν

1/2
n ) by a

Marcinkiewicz – Zygmund style weak law of large numbers for triangular arrays.41

Condition 4: By Lemma 1, Lemma 1.7 of van der Vaart (2002) and Theorem I.2.7 of
Conway (1985), the random vector(

ℓ̃θ(Wi), g
′ℓ̇θ(Wi) +

K∑
k=0

h̃k(Wi)

)

is zero mean and has a finite variance matrix under Pθ. By the definition of ℓ̃θ as an

41A formal statemement is as follows: Let (Xn,i)n∈N,1≤i≤n be a triangular array of zero-mean random
variables, i.i.d. along rows. Let Sn :=

∑n
i=1 Xn,i. If supn∈N E|Xn,1|p < ∞ for p ∈ (1, 2), then Sn/n

1/p

converges to zero in probability as n → ∞. For the case of an i.i.d. sequence (in place of a triangular array)
this result is recorded as, for example, Theorem 6.3.2 of Gut (2005); the proof given there extends essentially
verbatim to the case considered here.
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orthogonal projection and Theorem 12.14 in Rudin (1991), one has

Pθ

[
ℓ̃θ

(
g′ℓ̇θ +

K∑
k=0

h̃k

)]
= Pθ

[
ℓ̃θℓ̇

′
θ

]
g = Ĩθg.

Therefore, by the central limit theorem, under P n
θ

√
nPn

(
ℓ̃θ, g

′ℓ̇θ +
K∑
k=0

h̃k

)
⇝ N

((
0
0

)
,

(
Ĩθ Ĩθg

g′Ĩθ σ(g, h)

))
, (44)

where

σ(g, h) := Pθ

[
g′ℓ̇θ +

K∑
k=0

h̃k

]2
.

Combination of this with Lemma 2 and equation (30) verifies (38).
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D Figures and tables

Figure 3: Structural Shock Densities
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Notes: The plots show the different densities considered for simulating the structural shocks. Densities 2-4

are t-distributions normalised to have unit variance. Densities 5 - 10 (and their names) are mixtures of

normals taken from Marron and Wand (1992); see their table 1 for the definitions. Density 1 is the standard

Gaussian and omitted from the figure.
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Figure 4: Power Comparison Baseline model
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Notes: Empirical power curves for the baseline model with k = 2 and n = 1000. Each plot corresponds

to the choice for densities ϵik, for k ≥ 2, where the numbers correspond to the different densities shown

in Figure 3. The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to

LMpmle and the dot-dashed green line to Sgmm.
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Figure 5: Power LSEM
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 1000. Each plot corresponds

to the choice for densities ϵik, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure 3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂),

with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂

test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure 6: Densities: returns to schooling
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Notes: We show the kernel density estimates for ϵ̂i,1, ϵ̂i,2 and ϵ̂i,3 (blue line) together with the pdf of the

standard normal distribution (red line). The error estimates are obtained as ϵ̂i = ÂV̂i, where Â = A(α̃1, σ̂)

with α̃1 being the value that minimizes the score statistic.
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Figure 7: Confidence sets: returns to schooling
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(a) Semi-parametric score test
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(b) Pseudo MLE LM test

Notes: We show 95% (light gray) and 67% (dark gray) confidence sets for α = (α1, α2), where α1 captures

the effect of education on log wages and α2 capture the correlation between the instrument (proximity to

schooling interacted with parental education) and the error of the log wage equation. The red line indicates

the confidence interval under the restriction of instrument exogeneity, i.e. α2 = 0. Figure (a) shows the

result after inverting the weak non-Gaussianity robust test Ŝγ̂ . Figure (b) shows the result after inverting

the pseudo MLE LM test based on the Student’s t density.
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Table 2: Rejection Frequencies Ŝγ̂ test for Baseline model

n K B 1 2 3 4 5 6 7 8 9 10

200 2 4 0.049 0.049 0.048 0.040 0.047 0.049 0.034 0.049 0.048 0.048

200 2 6 0.048 0.045 0.049 0.044 0.048 0.053 0.047 0.045 0.058 0.051

200 2 8 0.050 0.049 0.047 0.044 0.048 0.048 0.053 0.050 0.051 0.047

200 3 4 0.043 0.039 0.039 0.039 0.044 0.048 0.026 0.049 0.052 0.050

200 3 6 0.045 0.038 0.040 0.044 0.041 0.048 0.044 0.047 0.052 0.043

200 3 8 0.047 0.046 0.040 0.040 0.044 0.048 0.042 0.049 0.044 0.051

200 5 4 0.032 0.034 0.033 0.034 0.035 0.039 0.015 0.041 0.045 0.043

200 5 6 0.037 0.033 0.036 0.032 0.032 0.040 0.043 0.045 0.043 0.044

200 5 8 0.039 0.038 0.038 0.030 0.035 0.043 0.045 0.040 0.041 0.038

500 2 4 0.053 0.046 0.053 0.045 0.047 0.052 0.031 0.049 0.045 0.046

500 2 6 0.048 0.049 0.048 0.048 0.049 0.052 0.057 0.047 0.047 0.049

500 2 8 0.048 0.048 0.045 0.049 0.047 0.045 0.051 0.052 0.048 0.045

500 3 4 0.042 0.039 0.040 0.046 0.048 0.048 0.021 0.042 0.046 0.047

500 3 6 0.043 0.045 0.042 0.042 0.045 0.047 0.047 0.051 0.044 0.045

500 3 8 0.046 0.045 0.040 0.035 0.042 0.047 0.044 0.045 0.050 0.047

500 5 4 0.040 0.036 0.039 0.036 0.041 0.046 0.016 0.048 0.047 0.046

500 5 6 0.041 0.039 0.039 0.039 0.040 0.049 0.046 0.045 0.044 0.044

500 5 8 0.039 0.040 0.036 0.041 0.043 0.050 0.050 0.044 0.046 0.047

1000 2 4 0.042 0.052 0.040 0.055 0.047 0.052 0.046 0.052 0.046 0.048

1000 2 6 0.054 0.052 0.045 0.050 0.045 0.049 0.049 0.054 0.045 0.057

1000 2 8 0.047 0.048 0.048 0.047 0.048 0.052 0.050 0.048 0.055 0.052

1000 3 4 0.049 0.041 0.043 0.045 0.048 0.050 0.054 0.051 0.051 0.047

1000 3 6 0.048 0.044 0.038 0.040 0.050 0.047 0.046 0.049 0.051 0.045

1000 3 8 0.046 0.047 0.047 0.042 0.049 0.045 0.050 0.052 0.043 0.047

1000 5 4 0.038 0.035 0.038 0.047 0.041 0.044 0.050 0.046 0.047 0.048

1000 5 6 0.041 0.043 0.039 0.042 0.043 0.049 0.044 0.048 0.048 0.049

1000 5 8 0.042 0.042 0.038 0.039 0.048 0.050 0.049 0.047 0.045 0.049

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the baseline model Yi = A−1ϵi. The test has nominal level a = 0.05. The columns denote

the sample size n, the dimension of the model K, the number of B-splines B and the choice for densities ϵik,

for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3.



Table 3: Rejection Frequencies Alternative Tests for Baseline model

Cat (i) n 1 2 3 4 5 6 7 8 9 10

Wmle 200 0.179 0.149 0.139 0.127 0.113 0.059 0.097 0.152 0.125 0.171

500 0.180 0.133 0.114 0.115 0.095 0.167 0.073 0.114 0.097 0.150

1000 0.188 0.101 0.079 0.074 0.061 0.405 0.058 0.124 0.103 0.170

LRmle 200 0.028 0.054 0.060 0.046 0.054 0.026 0.048 0.017 0.018 0.024

500 0.043 0.056 0.068 0.054 0.065 0.023 0.053 0.016 0.017 0.024

1000 0.049 0.065 0.063 0.061 0.053 0.031 0.051 0.022 0.018 0.025

Wpmle 200 0.375 0.211 0.198 0.086 0.141 0.058 0.105 0.495 0.998 0.467

500 0.485 0.264 0.204 0.073 0.163 0.030 0.079 0.973 0.999 0.870

1000 0.570 0.230 0.180 0.051 0.131 0.023 0.068 0.428 1.000 0.947

LRgmm 200 0.413 0.411 0.425 0.441 0.290 0.379 0.120 0.216 0.086 0.232

500 0.292 0.246 0.246 0.286 0.141 0.171 0.025 0.109 0.066 0.106

1000 0.232 0.181 0.155 0.176 0.074 0.115 0.014 0.068 0.059 0.049

Cat (ii) n 1 2 3 4 5 6 7 8 9 10

Ŝγ̂ 200 0.051 0.047 0.048 0.040 0.049 0.049 0.047 0.048 0.050 0.044

500 0.047 0.047 0.054 0.047 0.044 0.043 0.047 0.048 0.051 0.054

1000 0.047 0.043 0.046 0.049 0.048 0.047 0.050 0.044 0.049 0.043

LMmle 200 0.052 0.058 0.054 0.043 0.040 0.043 0.023 0.018 0.002 0.059

500 0.056 0.052 0.052 0.042 0.046 0.047 0.028 0.017 0.001 0.062

1000 0.062 0.052 0.050 0.049 0.039 0.040 0.029 0.016 0.002 0.052

LMplme 200 0.049 0.045 0.049 0.035 0.038 0.046 0.030 0.041 0.042 0.042

500 0.049 0.047 0.050 0.039 0.047 0.046 0.034 0.046 0.044 0.051

1000 0.046 0.048 0.053 0.044 0.041 0.046 0.034 0.042 0.052 0.047

Sgmm 200 0.188 0.209 0.248 0.326 0.236 0.264 0.195 0.108 0.059 0.130

500 0.094 0.105 0.123 0.223 0.116 0.133 0.103 0.057 0.028 0.064

1000 0.061 0.070 0.081 0.162 0.069 0.078 0.054 0.031 0.019 0.035

Notes: The table shows the empirical rejection frequencies based on S = 5, 000 Monte Carlo replications for

the baseline model Yi = A−1ϵi, with n = 500 and K = 2. All tests have nominal level a = 0.05. The first

column indicates the test the second the sample size. The remaining columns denote the choice for densities

ϵik, for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3.
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Table 4: Rejection Frequencies Ŝγ̂ test for LSEM - OLS β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.050 0.054 0.049 0.049 0.038 0.030 0.038 0.043 0.057 0.046

200 2 3 0.049 0.054 0.054 0.048 0.046 0.059 0.042 0.035 0.029 0.052

200 3 2 0.056 0.058 0.050 0.062 0.059 0.031 0.018 0.038 0.047 0.050

200 3 3 0.063 0.054 0.057 0.065 0.060 0.025 0.023 0.051 0.058 0.049

200 5 2 0.098 0.104 0.109 0.142 0.094 0.051 0.064 0.054 0.023 0.057

200 5 3 0.116 0.116 0.131 0.155 0.103 0.039 0.029 0.061 0.026 0.072

500 2 2 0.049 0.050 0.039 0.042 0.041 0.027 0.029 0.036 0.026 0.029

500 2 3 0.048 0.041 0.047 0.047 0.037 0.029 0.024 0.034 0.050 0.051

500 3 2 0.051 0.051 0.048 0.040 0.037 0.028 0.029 0.038 0.022 0.039

500 3 3 0.048 0.050 0.047 0.051 0.053 0.028 0.048 0.041 0.037 0.036

500 5 2 0.071 0.078 0.068 0.081 0.049 0.023 0.060 0.042 0.039 0.038

500 5 3 0.067 0.068 0.080 0.085 0.063 0.022 0.045 0.049 0.027 0.051

1000 2 2 0.040 0.051 0.049 0.029 0.043 0.032 0.033 0.045 0.049 0.041

1000 2 3 0.048 0.044 0.040 0.040 0.040 0.030 0.038 0.046 0.030 0.044

1000 3 2 0.045 0.038 0.043 0.034 0.033 0.032 0.034 0.040 0.039 0.042

1000 3 3 0.044 0.045 0.043 0.036 0.030 0.032 0.035 0.040 0.024 0.034

1000 5 2 0.059 0.051 0.057 0.051 0.039 0.024 0.063 0.030 0.028 0.036

1000 5 3 0.057 0.058 0.056 0.050 0.035 0.018 0.046 0.036 0.029 0.040

Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model. The test has nominal level a = 0.05. The columns

denote the sample size n, the dimension of the model K, the number of covariates d and the choice for

densities ϵik, for k ≥ 2, where the numbers correspond to the different densities shown in Figure 3. The Sγ̂

test was implemented using B = 6 B-splines.
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Table 5: Rejection Frequencies Ŝγ̂ test for LSEM - One-step β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.067 0.080 0.068 0.081 0.070 0.031 0.054 0.056 0.061 0.051

200 2 3 0.068 0.074 0.076 0.072 0.066 0.071 0.057 0.047 0.026 0.061

200 3 2 0.095 0.106 0.104 0.120 0.090 0.041 0.026 0.059 0.036 0.061

200 3 3 0.099 0.103 0.105 0.114 0.098 0.037 0.028 0.071 0.035 0.064

200 5 2 0.187 0.226 0.247 0.264 0.178 0.063 0.040 0.072 0.020 0.068

200 5 3 0.212 0.238 0.262 0.289 0.193 0.064 0.049 0.089 0.036 0.088

500 2 2 0.062 0.062 0.068 0.067 0.057 0.034 0.049 0.041 0.021 0.037

500 2 3 0.059 0.064 0.071 0.069 0.056 0.031 0.019 0.046 0.031 0.051

500 3 2 0.078 0.078 0.081 0.079 0.066 0.026 0.024 0.047 0.021 0.045

500 3 3 0.076 0.081 0.091 0.088 0.068 0.025 0.029 0.050 0.042 0.042

500 5 2 0.112 0.149 0.158 0.181 0.097 0.036 0.035 0.060 0.030 0.044

500 5 3 0.129 0.151 0.168 0.180 0.101 0.033 0.023 0.069 0.031 0.058

1000 2 2 0.059 0.059 0.065 0.048 0.049 0.025 0.021 0.055 0.050 0.038

1000 2 3 0.060 0.060 0.060 0.068 0.057 0.038 0.052 0.050 0.027 0.051

1000 3 2 0.061 0.067 0.068 0.065 0.053 0.023 0.048 0.047 0.023 0.045

1000 3 3 0.064 0.066 0.072 0.070 0.054 0.040 0.016 0.047 0.022 0.041

1000 5 2 0.091 0.105 0.108 0.111 0.069 0.032 0.026 0.042 0.029 0.043

1000 5 3 0.085 0.102 0.120 0.103 0.065 0.026 0.020 0.047 0.026 0.050

Notes: The table shows the empirical rejection frequencies for the Ŝγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model (3). The test has nominal level a = 0.05. The

columns denote the sample size n, the dimension of the observations K, the number of covariates d and the

choice for densities ϵik, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

3. The Sγ̂ test was implemented using B = 6 B-splines and using OLS estimates for β.
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Table 6: Confidence intervals: returns to schooling

Method Estimate Conf Interval Length

Ŝγ̂ - [0.068 , 0.105] 0.037
AR - [0.041 , 0.127] 0.086
OLS 0.076 [0.068 , 0.084] 0.016
2SLS 0.084 [0.040 , 0.127] 0.087

Notes: We report the 95% confidence bands for the effect of education on log wages using the proximity

to college interacted with parental education as instrument. The sample size is n = 2320 and the model

includes control variables for experience, race, smsa and region. The OLS and 2SLS confidence intervals are

based on inverting the t-statistic under a normal limiting distribution. The confidence bands corresponding

to the semi-parametric score test are based on the Ŝγ implemented using B = 6 B-splines and OLS estimates

for β̂. The AR confidence band is based on inverting the Anderson-Rubin statistic.
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